Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-2 of 2
Resins
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ETCE2001, Part B: Offshore and Arctic Operations; Pipeline Technology; Production Technology; Tribology, 573-583, February 5–7, 2001
Paper No: ETCE2001-17001
Abstract
Low mold filling time and improper fiber wetting are the main problems faced by the manufacturers applying the Resin Transfer Molding (RTM) process. The objective of this work was to minimize these problems and to study the effect of weirs on the RTM process. A mold was designed such that the lower mold plate contains two weirs, one at the resin inlet port and the other at the outlet port. The purpose of adding the weirs is to provide a continuous inlet stream near the resin inlet port and to cause backpressure near the outlet port to induce complete mold filling. Laminated plates were prepared using glass fibers and epoxy resin (combination of EPON resin-862 and curing agent W). The test parameters investigated, such as void contents, dry spots and mold filling time, were compared with those of samples that were prepared without the use of weirs. It was found that the presence of weirs resulted in significant elimination of dry spots, minimization of void contents and a reduction in mold filling time. As a result, the cost required to manufacture composite parts can be reduced by the use of weirs. In addition to the experimental investigation, a computer simulation (using LCMFLOT software) of resin flow inside the mold cavity was conducted. Many simulations were run in order to optimize the height and shape of the weir. Rectangular weirs of height 2.54 mm showed minimum mold fill time. It was found that the results obtained from the experimental work and flow simulations are in good agreement. Based on this work, it is evident that complex parts can be produced in less cycle time if weirs are positioned at appropriate locations.
Proceedings Papers
Proc. ASME. ETCE2002, Engineering Technology Conference on Energy, Parts A and B, 147-152, February 4–5, 2002
Paper No: ETCE2002/CMDA-29069
Abstract
Use of syntactic foam as core material in the sandwich structured composites is increasing due to its higher compressive strength, damage tolerance and low moisture absorption compared to the open cell structured foams. Extensive microscopic examination of the syntactic foams tested under compressive and three-point bending conditions is undertaken in this study. The aim of the investigation is to determine the local fracture mode and correlate it with the microscopic structure of the material. Local stress states are identified in the material based on the microscopic fracture features. Syntactic foam tested in the study has resin to microballoons ratio of 1.52 by weight. Compression tests were conducted on the syntactic foam specimens having two different aspect rations, which were 0.4 and 0.91. Three-point bend tests were conducted on the sandwich structures containing syntactic foam as core material and glass fabric as the skin material.