It has been observed in previous experimental studies that round helium jets injected into air display a repetitive structure for a long distance, somewhat similar to the buoyancy-induced flickering observed in diffusion flames. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis of a round helium jet injected into air was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. The temporal growth rates of the disturbances increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity.
Skip Nav Destination
ASME 2002 Engineering Technology Conference on Energy
February 4–5, 2002
Houston, Texas, USA
Conference Sponsors:
- Petroleum Institute
ISBN:
0-7918-3591-X
PROCEEDINGS PAPER
Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected Into a High-Density Gas
Anthony L. Lawson,
Anthony L. Lawson
University of Oklahoma, Norman, OK
Search for other works by this author on:
Ramkumar N. Parthasarathy
Ramkumar N. Parthasarathy
University of Oklahoma, Norman, OK
Search for other works by this author on:
Anthony L. Lawson
University of Oklahoma, Norman, OK
Ramkumar N. Parthasarathy
University of Oklahoma, Norman, OK
Paper No:
ETCE2002/CAE-29010, pp. 37-46; 10 pages
Published Online:
January 7, 2009
Citation
Lawson, AL, & Parthasarathy, RN. "Linear Temporal Stability Analysis of a Low-Density Round Gas Jet Injected Into a High-Density Gas." Proceedings of the ASME 2002 Engineering Technology Conference on Energy. Engineering Technology Conference on Energy, Parts A and B. Houston, Texas, USA. February 4–5, 2002. pp. 37-46. ASME. https://doi.org/10.1115/ETCE2002/CAE-29010
Download citation file:
6
Views
Related Proceedings Papers
Related Articles
An Elasticity Solution for the Global Buckling of Sandwich Beams/Wide Panels With Orthotropic Phases
J. Appl. Mech (March,2010)
Buoyancy Dominated He – O 2 Separated Jet Mixing in a Tubular Reactor
J. Fluids Eng (September,2008)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Vertical Rise of a Weather Balloon
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
The Special Characteristics of Closed-Cycle Gas Turbines
Closed-Cycle Gas Turbines: Operating Experience and Future Potential