The occurrence of barite sag is a well recognized but poorly understood phenomenon in the drilling industry. Industry experts have offered a variety of measuring parameters, based upon empirical data, that only partially correlate with the occurrence of barite sag. The industry’s lack of understanding of the mechanisms and types of barite sag generally result in a poor correlation between laboratory results and field observations of barite sag. The financial impact of barite sag on drilling costs, usually resulting from rig-time lost while circulating and conditioning the mud system, is not trivial. There are reported incidences where recurring barite sag problems have resulted in the loss of drilling projects. The accuracy and relevance of technology utilized to manage barite sag can help reduce drilling costs. In the field barite sag frequently occurs in deviated wells where pipe eccentricity creates conditions conducive to dynamic sag. With the exception of a flow loop, laboratory tests do not simulate field conditions. Historically, laboratory tests characterize density variations arising from a vertical fluid column as static or dynamic sag without proper consideration to angle, pipe eccentricity, annular shear rates and annular flow. This paper reviews traditional and newly-emerging barite sag technology and compares their ability to predict barite sag potential. This potential will be determined under dynamic and static conditions in a sophisticated flow loop configured to match certain field conditions.

This content is only available via PDF.
You do not currently have access to this content.