Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Journal Volume Number
- References
- Conference Volume Title
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: Osteocyte
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Cortical Bone Periosteocytic Space Morphology Can Affect Osteocyte-Level Mass Flows and Shear Stresses
Available to Purchase
Proc. ASME. ESDA2008, Volume 2: Automotive Systems; Bioengineering and Biomedical Technology; Computational Mechanics; Controls; Dynamical Systems, 77-84, July 7–9, 2008
Publisher: American Society of Mechanical Engineers
Paper No: ESDA2008-59318
... 09 07 2009 This work investigates the interstitial fluid flow through the osteocytic-lacunar-canalicular system of cortical bone. The study assumes that it is a dynamic environment that undergoes continuous morphological changes. The model employed is a typical canaliculus (an annular...