In this study, we adopt a dual power system for extension (DPES) operation by combining the existing power system of an electric vehicle with a hydrogen fuel cell. This was to enhance the durability of the electric vehicle and reduce the inconvenience of battery charging. The lithium battery acts as the primary power source and has real-time monitoring of its state of charge (SOC), while the hydrogen fuel cells act as the auxiliary power supply. The auxiliary power can be used either directly or for charging the lithium battery while the vehicle is in its idle state. The dual power system is coupled with a dual-mode motor controller and energy management system. This study aims to apply the dual power system on the electric vehicle using hydrogen fuel cells. We designed a simulation platform for real driving conditions using Labview to send and receive control commands. In this study, we simulated the road cycles of the Economic Commission for Europe (ECE-40), Japanese legislative cycle (JP10) and the World-wide Motorcycle Emissions Test Cycle (WMTC), using Proportional-integral Control (PI) for automatic tracking and employing engineering error analysis to determine the most suitable PI parameter values for the simulated system. The results showed that using a fixed 100 W fuel cell could enhance the operation time up to 21 %, 21 %, and 14 % for the road cycles of the ECE-40, JP10, and WMTC, respectively. Due to the required features of an actual vehicle, we also designed an energy limiting system to manage the driver-controlled electronic throttle by controlling the instantaneous and maximum power output of the motor in order to achieve savings in energy consumption, increase its operation time, protect the system, and enhance its durability.

This content is only available via PDF.
You do not currently have access to this content.