Although a certain amount of work has been presented in literature which concerns micro and nano tribology, few contributions have been dedicated to the development of experimental set up for friction assessment in MEMS. The present paper offers a contribution which attempts to fill this gap: the proposal of a new concept design of a micro-tribometer for testing silicon-silicon sliding in MEMS devices, particularly in those obtained via D-RIE process. Since the general contact conditions at the macro scale are very different from those which characterize MEMS, the proposed tribometer is very different from the classic pin-on-disk or block-on-ring. For this reason, a dedicated MEMS has been built, whose only purpose is recreating silicon-silicon sliding under prescribed loads and, then, assessing friction and wear. Since most of MEMS have planar relative motion, the tribometer presented in this article is able study only planar relative motions, and so it has been essentially based on a the creation of a pair of conjugate profiles, whose relative motion has been obtained by using Finite Element Analysis (FEA) simulations, rather than by the classical centrodes theory.

This content is only available via PDF.
You do not currently have access to this content.