In this paper a vibration isolated design of the Coriolis Mass-Flow Meter (CMFM) is proposed, by introducing a compliant connection between the casing and the tube displacement sensors with the intention to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube actuation and mass-flow, but independent of casing excitations.

Analyses are focussed on changing the transfer function of support excitations to the relative displacement measurement. The influence of external vibrations on a compliant sensor element and the tube are made equal by tuning the resonance frequency and damping of the compliant sensor element and therefore the influence on the relative displacement measurement is minimised. Based on simulation results, a prototype is built and validated.

The validated design show a 20dB reduction of the influence of external vibrations on the mass-flow measurement value of a CMFM, without affecting the sensitivity for mass-flow.

This content is only available via PDF.
You do not currently have access to this content.