Clutch system is an important element in the vehicle powertrain. It transmits the rotation from the crankshaft to the gearbox input shaft and filters axial and torsional vibrations providing from engine or induced by friction. This paper discusses axial dynamic behavior of automotive clutch for manual transmission. For this study, a tridimensional finite element model of clutch system is developed to simulate a clutch shaker test. First, an impact hammer test is performed to identify vibration properties of each clutch component. A pre-stressed modal analysis is then carried out to determine mode shapes and its associated natural frequencies of the clutch assembly. Shaker and simulation results are eventually compared to validate the clutch model. This latter offers for the design phase, a tool to avoid natural vibrations or to vibrate at specified frequencies.

This content is only available via PDF.
You do not currently have access to this content.