In this study non-linear thermal buckling of circular shallow arches made of functionally graded materials subjected to a linear temperature gradient is investigated. For this purpose, a functionally graded circular shallow arch is considered that its strain-displacement relation follows the Donnells nonlinear shallow shell theory. The material properties are varied smoothly through the arch thickness according to the power law distribution of the volume fraction of constituent materials. Also, material properties are considered temperature-dependent. The classical single layer theory assumptions that are reasonable for slender arches are implemented. To investigate the large deformations of such arch, the von-Karman type geometrical nonlinearity is utilized that is suitable for moderately large class of rotations. The virtual displacement principle and calculus of variation are employed to derive the governing equilibrium equations and complete set of boundary conditions of the FGM arch. The adjacent equilibrium criterion is employed for the stability analysis of the FGM arch. An analytical approach is accomplished and a closed-forms solution for thermal bifurcation points of the FGM shallow arches is presented. Also critical bifurcation loads corresponding to the critical temperatures with the presence of non-linear pre-buckling deformations is obtained. Illustrative results examine the effect of various involved parameters such as power law index, opening angle, geometric parameter (or otherwise length to thickness ratio). Obtained numerical results represent that, in most cases, thermal bifurcation for the FGM arches occurs in the high temperatures and the critical buckling temperatures are approximately high even for slender FGM arches. Also effective of ceramic or metal rich area at the bottom surface of the FGM arch is investigated and results are presented for both cases and are compared together. Varieties between this two cases due to contrast between material and structural stretching-bending coupling effect. Results presented illustrative the ceramic rich area at the bottom surface cause the higher critical buckling temperatures for the FGM arches.

This content is only available via PDF.
You do not currently have access to this content.