Recently, micro/nanofabrication technology has been used to develop a number of microfluidic systems. With its integration to microfluidic devices, microchannels and micro scale pin fin heat sinks find applications in many areas such as drug delivery and propulsion in biochemical reaction chambers and micro mixing. Many research efforts have been performed to reveal thermal and hydrodynamic performances of microchannel based micro fluidic devices. In the current study, it is aimed to extend the knowledge on this field by investigating heat and fluid flow in micro heat sinks at high flow rates. Moreover, thermodynamic and thermo-economic aspects were also considered. De-ionized water was used as the coolant in the system. Flow rates were measured over pressures of 20–80 psi. A serpentine heater was deposited at the back of the micro pin fin devices to enable the delivery of heat to these devices. Two micro-pin fin devices each having different geometrical properties (Circular based and Hydrofoil based) were used in this study. In addition, the performances (thermal-hydraulic, exergy, exergo-economic) were also experimentally obtained for a plain microchannel device. Thermal resistances, exergy efficiencies and thermo-economic parameters were obtained from the devices and their performances were assessed.

This content is only available via PDF.
You do not currently have access to this content.