Femtosecond lasers enable materials processing with their notably characteristics, such as precision, high peak density, flexible, and minor thermal affected zone. Applications ranging from high precision micromachining to biological manipulation with no thermal damages are possibly executed via this technology. In this study, the three-dimensional molecular dynamics simulation associated with the parallel computation were utilized to explore the ablation mechanism, the trend between the femtosecond laser fluence density and laser ablation depth as well as affected zone. In addition, we also compared the ablation methods which were single ablation and superposited ablation machining processes. Moreover, the heat-affected zone effect was discussed. Ultimately, a femtosecond laser ablation manufacturing process simulation was implemented by the combination of laser fluence densities to demonstrate the feasibility of fabricating the metallic gratings.

This content is only available via PDF.
You do not currently have access to this content.