This paper presents an optimal attitude maneuver by Reaction Wheels to achieve desired attitude for a Satellite. At first, Dynamic Equations of motion for a satellite with just three Reaction Wheels of its active actuators are educed, and then State Equations of this system are obtained. An optimal attitude control with the LQR method has exerted for a distinct satellite by its Reaction Wheels. As a result simulation has presented an optimal effort by calculated Gain matrix to achieve desired attitude for chosen Satellite. It shows that satellite becomes stable in desired attitude with a low energy and time consumption. Furthermore equations derivation, coupling of electrical Reaction Wheel equations with dynamic equations of satellite motion, linearizes them and Reaction wheel saturation avoidance approaches are innovative. Simulation results, accuracy of achieving desired attitude and satellite stability support this statement.

This content is only available via PDF.
You do not currently have access to this content.