Effect of Stone-Wales percentage defect on effective elastic modulus of single-walled carbon nanotubes (SWCNT) is investigated. The Stone-Wales defect is a crystallographic defect that happens in nanotubes and is believed to affect the nanotubes mechanical properties. In order to calculate the mechanical properties of SWCNTs under axial tension, molecular dynamics (MD) simulations using the Morse potential is performed. An in house FORTRAN code is developed and utilized. The Young’s modulus of the perfect SWCNTs and those with different defect percentage is obtained using the classical elasticity theory. It is observed that for low percentage of defect (less than 8%) as the diameter increases the Young’s modulus of SWCNTs slightly increases. However, for high percentage of defect (more than 8%) as diameter increases the Young modulus clearly decreases.

This content is only available via PDF.
You do not currently have access to this content.