The active reflector of the five-hundred-meter aperture sphere radio telescope (FAST) is constituted by about 4600 triangular reflector elements, whose surface error will determine the telescope’s antenna efficiency. One solution is a grid structure backup with the bolted spherical joints, in which the surface accuracy is dominated mainly by the length accuracy of the rods in it. In this paper, an accuracy analysis based on Monte Carlo method is proceeded to predict the surface error. Random errors are input the rods, and the surface errors in root mean square (rms) are output. After the calculations, the final accuracy’s probability distribution charts are given for the different error inputs. And a relationship chart between rod length error and final accuracy is given to help determining the most reasonable rod length error. To solve the position of the grid structure, an iteration method is deduced. The relationship between joints and rods in the frame structure which is described as a graph, is presented by adjacency list. Forces on joints are balanced at the beginning, but when rod length errors are input, forces to pull or push the joints are yielded. The process of moving their positions to make the forces balance again is the process to solve the surface accuracy. An existing reflector element model was measured. The measurement verified the analysis. Finally, the proper accuracy of rods length error is given. It is useful for cost controlling and time keeping in FAST design, for the possibility to achieve a qualified surface by controlling the manufacture error of rods reveals that the reflector elements maybe avoid adjustment and can be mounted to the telescope directly. The method to predict accuracy can be generalized for the other grid structures.
Skip Nav Destination
ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
July 12–14, 2010
Istanbul, Turkey
Conference Sponsors:
- International
ISBN:
978-0-7918-4918-7
PROCEEDINGS PAPER
Analysis of Manufacture Errors for Space Truss With Bolted Spherical Joints Base on Monte Carlo Method
Yongwei Guo,
Yongwei Guo
National Astronomical Observatories of China, Beijing, China
Search for other works by this author on:
Qiming Wang,
Qiming Wang
National Astronomical Observatories of China, Beijing, China
Search for other works by this author on:
Xuedong Gu
Xuedong Gu
National Astronomical Observatories of China, Beijing, China
Search for other works by this author on:
Yongwei Guo
National Astronomical Observatories of China, Beijing, China
Qiming Wang
National Astronomical Observatories of China, Beijing, China
Xuedong Gu
National Astronomical Observatories of China, Beijing, China
Paper No:
ESDA2010-25180, pp. 565-569; 5 pages
Published Online:
December 28, 2010
Citation
Guo, Y, Wang, Q, & Gu, X. "Analysis of Manufacture Errors for Space Truss With Bolted Spherical Joints Base on Monte Carlo Method." Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 4. Istanbul, Turkey. July 12–14, 2010. pp. 565-569. ASME. https://doi.org/10.1115/ESDA2010-25180
Download citation file:
3
Views
Related Proceedings Papers
Related Articles
Discrete Ordinates and Monte Carlo Methods for Radiative Transfer Simulation Applied to Computational Fluid Dynamics Combustion Modeling
J. Heat Transfer (May,2009)
Putting Statistics into the Statistical Energy Analysis of Automotive Vehicles
J. Vib. Acoust (October,1997)
Backward Monte Carlo Simulations in Radiative Heat Transfer
J. Heat Transfer (February,2003)
Related Chapters
Exploration
Engineering the Everyday and the Extraordinary: Milestones in Innovation
Supports
Process Piping: The Complete Guide to ASME B31.3, Fourth Edition
Supports
Process Piping: The Complete Guide to ASME B31.3, Third Edition