This paper proposes a novel method to design and optimize a robust controller for a SCARA robot using quantitative feedback theory (QFT). In every physical system, there are number of factors that cause uncertainty in the performance. A robot arm is an example of such systems. Although QFT design technique has been successfully used for plants having structured parameter uncertainty, there are some difficulties that a designer encounters. In this paper we investigated the effects of parameter uncertainties of a SCARA robot on frequency response of open loop system. Taguchi’s experimental design technique is used for determination of the uncertain parameters, which have the greatest influence on the outcome through a very limited number of experiments. With consideration of important parameters, the next step in QFT design procedure is loop-shaping. In the presented method the controller is designed directly by choosing and optimization of coefficients of transfer function by using genetic algorithm. In optimization procedure, stability and bounds of the system were considered as the constraints of the problem. Non-linear simulations on the tracking problem are performed and the results highlight the success of the designed controllers. The results indicate that applying the proposed technique successfully overcomes the obstacles to robust control of non-linear SCARA robots.
Skip Nav Destination
ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
July 12–14, 2010
Istanbul, Turkey
Conference Sponsors:
- International
ISBN:
978-0-7918-4917-0
PROCEEDINGS PAPER
A Novel Method for Robust Control Using Taguchi Method and Genetic Algorithm in QFT Controller Available to Purchase
Ali Akbar Akbari,
Ali Akbar Akbari
Ferdowsi University of Mashhad, Mashhad, Khorasan, Iran
Search for other works by this author on:
Amir homayun Samiee,
Amir homayun Samiee
Ferdowsi University of Mashhad, Mashhad, Khorasan, Iran
Search for other works by this author on:
Pouria Naeemi Amini,
Pouria Naeemi Amini
Ferdowsi University of Mashhad, Mashhad, Khorasan, Iran
Search for other works by this author on:
Danial Fallah
Danial Fallah
Islamic Azad University - Mashhad, Mashhad, Khorasan, Iran
Search for other works by this author on:
Ali Akbar Akbari
Ferdowsi University of Mashhad, Mashhad, Khorasan, Iran
Amir homayun Samiee
Ferdowsi University of Mashhad, Mashhad, Khorasan, Iran
Pouria Naeemi Amini
Ferdowsi University of Mashhad, Mashhad, Khorasan, Iran
Danial Fallah
Islamic Azad University - Mashhad, Mashhad, Khorasan, Iran
Paper No:
ESDA2010-25026, pp. 743-749; 7 pages
Published Online:
December 28, 2010
Citation
Akbari, AA, Samiee, AH, Naeemi Amini, P, & Fallah, D. "A Novel Method for Robust Control Using Taguchi Method and Genetic Algorithm in QFT Controller." Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 3. Istanbul, Turkey. July 12–14, 2010. pp. 743-749. ASME. https://doi.org/10.1115/ESDA2010-25026
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Parameter Reduction in Estimated Model Sets for Robust Control
J. Dyn. Sys., Meas., Control (March,2010)
Frequency Domain Design for Robust Performance Under Parametric, Unstructured, or Mixed Uncertainties
J. Dyn. Sys., Meas., Control (June,1993)
Modelling, Identification, and Passivity-Based Robust Control of Piezo-actuated Flexible Beam
J. Vib. Acoust (April,2004)
Related Chapters
Fault-Tolerant Control of Sensors and Actuators Applied to Wind Energy Systems
Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems
Exercises
Taguchi Methods: Benefits, Impacts, Mathematics, Statistics and Applications
Graphical Methods for Control Systems
Introduction to Dynamics and Control in Mechanical Engineering Systems