In this paper, a new designed internal heat exchanger (suction-liquid line heat exchanger) for R134a automotive air conditioning system is proposed, and is studied experimentally. The approval is done by calorimeter test apparatus, which provides conditions close to real automotive A/C system operation. In this design, the high-pressure liquid passes through central channel and the low-pressure vapor flows in several parallel channels in the opposite direction. The results show that in all conditions, internal heat exchanger adoption will increase the condenser real capacity. Therefore, smaller condensers can be used to reach the same capacities. Using the designed internal heat exchanger will decrease the needed mass flow rate. In a constant mass flow rate, internal heat exchanger adoption will increase evaporator capacity. In all concluded tests, the compressor power consumption was decreasing by internal heat exchanger adoption; it was intensifying at higher air temperature passing through the condenser. Using this internal heat exchanger will decrease compressor power consumption up to 6%, and will increase mostly the coefficient of performance. The condenser higher air temperature will increase the coefficient of performance and its improvement with internal heat exchanger. In this case the coefficient of performance can increase up to 8.4%, and will enhance subcooled degree at expansion valve inlet up to 12.8°C.

This content is only available via PDF.
You do not currently have access to this content.