A theoretical approach, in order to define the structural behaviour of riveted joints, is presented. The closed form solutions lead to the definition of a Rivet Element useful to FE models of multi-riveted structures. The objective is an accurate evaluation of the local stiffness of riveted joints in FE analysis, which is fundamental to perform a reliable simulation of multi-joint structures and, consequently, a good estimate of loads acting on connections; this makes it possible to introduce new general criteria allowing, for example, to predict fatigue behaviour. On the other hand, a low number of degrees of freedom is needed when several connections are present in a complex structure. The goal is to reach a reliable model of the rivet region which can be used as the basis to develop a Rivet Element in FE analysis. The proposed Rivet Element combines the precision in the simulation with a very limited number degrees of freedom in the finite element model of a complex structure having several rivets. In the present paper the structural behavior of two simple riveted specimens is investigated experimentally and numerically using a new Rivet Element. A comparison with a joint model performed with very refined non-linear 3D models of rivet and with experimental data is performed and a good agreement is shown.

This content is only available via PDF.
You do not currently have access to this content.