Depleting oil reserves in shallow water are opening the avenues of new ventures in deep sea conditions. India is no exception; deep sea explorations are highly recommended and exercised. As part of the design process, there are requirements of structural strength based on criteria referring to failure modes, such as rupture by over loading, fatigue failures, buckling or an unstable fracture. 3D Nonlinear dynamic analysis of riser is obtained in the time domain using finite element solver ABAQUS/Aqua. The response histories so obtained are employed for the study of fatigue reliability analysis of riser. It is based on a bi-linear relationship to model fatigue crack growth and incorporates a failure criterion to describe the interaction between fracture and plastic collapse. Uncertainty modeling, especially on fatigue crack growth parameters, is undertaken with the aid of recently published data in support of the bi-linear crack growth relationship. Results pertaining to fatigue reliability and fatigue crack size evolution are presented using Monte Carlo Simulation. The bi-linear S-N curve and crack growth models are found to lead to higher fatigue life estimation. Sensitivity behavior pertinent to limit state adopted has been thoroughly investigated. These findings implicate inspection schemes for components of the marine structures to ensure minimization of the surprises due to wide scatter of the fatigue phenomenon in marine environment.

This content is only available via PDF.
You do not currently have access to this content.