This study concentrates on the simulation of elastic and thermoelastic wave propagation in two-dimensional thermoelastic regions based on the classical and generalized coupled thermoelasticity. A finite element scheme is employed to obtain the field variables directly in the space and time domains. The FE method is based on the virtual displacement and the Galerkin technique, which is directly applied to the governing equations. The Newmark algorithm is used to solve the FE problem in time domain. Solving 2D coupled thermoelasticity equations leads to obtain the distribution of temperature, displacement and stresses through the domain. The problem is solved for two different type of boundary conditions (BCs), and the behavior of temperature, displacement and stress waves according to these BCs and based on the classical and generalized coupled thermoelasticity theories are shown and compared with each other. Several characteristics of the thermoelastic waves in two-dimensional domains are discussed according to this analysis.

This content is only available via PDF.
You do not currently have access to this content.