Evolution of damage and fracture in a bone is affected by its microstructure. A non-uniform distribution of osteons in a cortical bone tissue results in a localization of deformation processes. Such localization can affect bone performance under external load and initiate fracture. In this paper, a two-dimensional numerical (finite-element) model for osteonal bovine cortical bone was developed with account for its microstructure. The topology of a transverse-radial cross section of a bovine cortical bone was captured with optical microscopy. The elastic-plastic data for the microstructural features of the cross section was obtained with a use of the nanoindentation technique. Both the topology and nanoindentation data were used as input to the model formulated with the Abaqus finite-element software. The area, directly reflecting micro-scale information, was embedded into the region with homogenised properties of the cortical bone. Different scenarios of the loading were tried: (i) tension in transverse direction, (ii) tension in radial direction and (iii) tension in both directions. The calculated stress and strain fields for various cases of loading demonstrate different patterns due to implementation of microstructural features in the finite-element model. There are obvious signs of localization of the plastic regions at the micro-structure level that can be considered as fracture precursors. The suggested approach emphasizes the importance of microstructural features in development of bone failure.
Skip Nav Destination
ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
July 12–14, 2010
Istanbul, Turkey
Conference Sponsors:
- International
ISBN:
978-0-7918-4915-6
PROCEEDINGS PAPER
Micro-Scale Numerical Model of Bovine Cortical Bone: Analysis of Plasticity Localization
Adel A. Abdel-Wahab,
Adel A. Abdel-Wahab
Loughborough University, Loughborough, Leicestershire, UK
Search for other works by this author on:
Angelo R. Maligno,
Angelo R. Maligno
Loughborough University, Loughborough, Leicestershire, UK
Search for other works by this author on:
Vadim V. Silberschmidt
Vadim V. Silberschmidt
Loughborough University, Loughborough, Leicestershire, UK
Search for other works by this author on:
Adel A. Abdel-Wahab
Loughborough University, Loughborough, Leicestershire, UK
Angelo R. Maligno
Loughborough University, Loughborough, Leicestershire, UK
Vadim V. Silberschmidt
Loughborough University, Loughborough, Leicestershire, UK
Paper No:
ESDA2010-25329, pp. 821-829; 9 pages
Published Online:
December 28, 2010
Citation
Abdel-Wahab, AA, Maligno, AR, & Silberschmidt, VV. "Micro-Scale Numerical Model of Bovine Cortical Bone: Analysis of Plasticity Localization." Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 1. Istanbul, Turkey. July 12–14, 2010. pp. 821-829. ASME. https://doi.org/10.1115/ESDA2010-25329
Download citation file:
29
Views
Related Proceedings Papers
Related Articles
Spatially Resolved Characterization of Geometrically Necessary Dislocation Dependent Deformation in Microscale Laser Shock Peening
J. Manuf. Sci. Eng (August,2009)
An Equivalent Constitutive Model of Cancellous Bone With Fracture Prediction
J Biomech Eng (December,2020)
Modeling of the Size Effects on the Behavior of Metals in Microscale Deformation Processes
J. Manuf. Sci. Eng (June,2007)
Related Chapters
Multiscale Methods for Lightweight Structure and Material Characterization
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation
Industrially-Relevant Multiscale Modeling of Hydrogen Assisted Degradation
International Hydrogen Conference (IHC 2012): Hydrogen-Materials Interactions
Estimating Resilient Modulus Using Neural Network Models
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17