The objective of this research is the determination of the wall shear stress (WSS) and velocity distribution patterns in axi-symmetric single or repeated stenoses in coronary arteries. The blood flow is modeled as an incompressible laminar flow with Re = 500 and the analysis is performed for both Newtonian and non-Newtonian blood behaviors. For the single stenosis cases, the area reduction of 25%, 64% and 75% are considered, while for the consecutive stenosis cases two sets of 64%, 25%, and 75%, 64% for the first and second stenosis are examined numerically respectively. Single stenosis cases are also employed for validation purposes, since experimental data are available for them. Present results indicate that regions of high and low shear stress may play an important role in the rupture of atherosclerotic lesions. Both sides of the stenotic area with high WSS and intense WSSG (Wall Shear Stress Gradient) are the most vulnerable sites of plaques. For the cases of consecutive stenoses, results show that displacement of the secondary plauque does not have any effect on the flow pattern. Moreover, the effect of the progression and the area reduction percentage of the consecutive stenoses were studied numerically. It was concluded that the progression of the first and the second stenoses creates high alterations in WSS and velocity distribution and increases the vulnerability of creation of new plaques. Furthermore, the pulsatile property of blood was considered. An accurate velocity waveform was implemented to predict the pulsatile behavior of blood. Results significantly vary from those of the laminar analysis in terms of velocity distribution and the magnitude of the maximum velocity. The flow patterns are studied for several time sections in one period.
Skip Nav Destination
ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
July 12–14, 2010
Istanbul, Turkey
Conference Sponsors:
- International
ISBN:
978-0-7918-4915-6
PROCEEDINGS PAPER
A Numerical Investigation on Pulsatile Blood Flow Through Consecutive Axi-Symmetric Stenosis in Coronary Artery
Seyed Mohammad Javid Mahmoudzadeh Akherat,
Seyed Mohammad Javid Mahmoudzadeh Akherat
Ferdowsi University of Mashhad, Mashhad, Iran
Search for other works by this author on:
Morteza Kimiaghalam
Morteza Kimiaghalam
Ferdowsi University of Mashhad, Mashhad, Iran
Search for other works by this author on:
Seyed Mohammad Javid Mahmoudzadeh Akherat
Ferdowsi University of Mashhad, Mashhad, Iran
Morteza Kimiaghalam
Ferdowsi University of Mashhad, Mashhad, Iran
Paper No:
ESDA2010-24534, pp. 757-765; 9 pages
Published Online:
December 28, 2010
Citation
Mahmoudzadeh Akherat, SMJ, & Kimiaghalam, M. "A Numerical Investigation on Pulsatile Blood Flow Through Consecutive Axi-Symmetric Stenosis in Coronary Artery." Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, Volume 1. Istanbul, Turkey. July 12–14, 2010. pp. 757-765. ASME. https://doi.org/10.1115/ESDA2010-24534
Download citation file:
13
Views
Related Articles
Computational Modeling of LDL and Albumin Transport in an In Vivo CT Image-Based Human Right Coronary Artery
J Biomech Eng (February,2009)
Multiphysics Simulation of Blood Flow and LDL Transport in a Porohyperelastic Arterial Wall Model
J Biomech Eng (June,2007)
Pulsatile Blood Flow Effects on Temperature Distribution and Heat Transfer in Rigid Vessels
J Biomech Eng (October,2001)
Related Chapters
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices
Structural Performance of Thermo-Active Foundations
Thermoactive Foundations for Sustainable Buildings
Two Advanced Methods
Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine