Acoustic emission (AE) has been known as an excellent technique to monitor crack propagation and fracture mechanism. For more domination on AE behavior of materials, comprehensive knowledge on effective parameters is necessary. Heat treatment as one of the important factors on AE characteristics of a material must be considered. This investigation is primarily aimed at studying the effect of tempering heat treatment on characteristics of acoustic emission signals monitored during tension tests of a cold-work tool steel. Single edge notched samples of AISI D2 cold-work tool steel were prepared. Then, respectively annealing, austenitizing and tempering were performed. Tempering was carried out at 5 different temperatures from 0 to 575 C. Finally, samples were loaded at tension and AE signals recorded synergistically. Analyzing of the characteristics of AE signals showed that: (a) In all tempering conditions, the AECC increases slowly at the beginning and rapidly at the point of crack growth, although at higher tempering temperatures we have gradual rise in AECC plot; (b) Increasing tempering temperature, average value of AE count number, amplitude, energy and peak frequency decreases; (c) At 525 C, because of secondary hardening, average value of investigated AE parameters increase strongly and (d) analyzing the relation between fracture mode, AE characteristics and tempering temperature showed that special AE behavior of specimens tempered at 525 C is because of the transformation of retained austenite in ferritic matrix.

This content is only available via PDF.
You do not currently have access to this content.