In this paper, we present the results of a study of TiN films which are deposited by a Physical Vapor Deposition and Ion Beam Assisted Deposition. In the present investigation the subsequent ion implantation was provided with N2+ ions. The ion implantation was applied to enhance the mechanical properties of surface. In the nanoindentation technique, hardness and Young’s modulus can be determined by the Oliver and Pharr method. Indentation was performed with CSM Nanohardness Tester. The results are analyzed in terms of load-displacement curves, hardness, Young’s modulus, unloading stiffness and elastic recovery The analysis of the indents was performed by Atomic Force Microscope. The stress determination follows the conventional sin2 Ψ method, using a X-ray diffractometer. A variety of analytic techniques were used for characterization, such as scratch test, calo test, SEM, AFM, XRD and EDAX. Therefore, by properly selecting the processing parameters, well-adherent TiN films with high hardness can be obtained on engineering steel substrates, and show a potential for engineering applications. The experimental results indicated that the mechanical hardness is elevated by penetration of nitrogen, whereas the Young’s modulus is significantly elevated.

This content is only available via PDF.
You do not currently have access to this content.