Surface texture plays an important role as it predominantly controls the frictional behavior and transfer layer formation at the contacting surfaces. In the present investigation, basic studies were conducted using inclined pin-on-plate sliding tester to understand the role of surface texture of hard material on coefficient of friction and transfer layer formation when sliding against soft materials. HCP materials such as pure Mg and pure Zn were used as pins while 080 M40 steel was used as plate in the tests. Two surface parameters of steel plates — roughness and texture — were varied in the tests. Tests were conducted in ambient conditions under both dry and lubricated conditions. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. It was observed for both the pin materials that the occurrence of stick-slip motion, the transfer layer formation and the value of coefficient of friction as well as its two components, namely, adhesion and plowing, depend primarily on surface texture. The effect of surface texture on coefficient of friction was attributed to the variation of plowing component of friction for different surfaces. Both the plowing component of friction and amplitude of stick-slip motion were highest for the surface texture that promotes plane strain conditions while these were lowest for the texture that favors plane stress conditions at the interface.

This content is only available via PDF.
You do not currently have access to this content.