The possibility of diagnosing the presence of a fault in a synchronous belt transmission during its work, without dismantling it, by monitoring the vibrations of the pulley support, was investigated in this work. After a few simulations with a multi-body numerical model, several experimental tests were carried out in an apparatus made up of a test bench, motion sensors, a system of signal acquisition and software for data processing. The behavior of mechanical transmissions with healthy and faulty synchronous belts was compared. The damage was simulated by removing a tooth from the belt. The results show that a localized defect on a synchronous belt modifies the frequency spectrum of the motion signals measured on the pulley support. From the experimental tests performed, the following results were obtained: the direction of vibrations measured on the pulley support must be chosen so as to be parallel to the direction of the taut side of the belt; the presence of a defect can be seen in the frequency spectrum by the change in the amplitude of the peaks at the first harmonics of the run frequency; the best condition to highlight the different behaviour in the power spectra occurs when the transmission is under load.

This content is only available via PDF.
You do not currently have access to this content.