Ask a mechanical designer, especially those dealing with robotics, what are the two main limitations when designing a new autonomous small mechanism. The answer will most likely be the need for better small-size actuation devices and better and smaller energy sources. Indeed, these two factors impose most of the constraints to designers, reflected in the size of the device, the forces it can apply, its achievable workspace, and the time duration it can work when not connected to a permanent energy source. Usually these parameters are in conflict with each other, that is, a small motor has somewhat low output torque and power, while a motor that can generate a large amount of torque is usually large in size and consumes a lot of power. Consequently, every mechanism designer is eager to design a small actuator that generates a large amount of torque while it simultaneously consumes a reasonable amount of energy. This report explains our efforts in developing an inflatable actuator having a small size yet can apply relatively large torque where at the same time can cover a large workspace. The inflatable actuator is shaped as a bellow which is composed of two materials with different shear modulus—one has high elasticity and the other low. By applying pressure inside the bellow, each of the materials tends to deform according to Hooke’s law, resulting in the bending effect due to the elongation differences between the two materials which are constrained to deform simultaneously. We describe the mechanical concept of the bellow actuator; we also provide an analytical model for the bellow deformation. Experimental results for verification of the model are also presented.
Skip Nav Destination
ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
July 7–9, 2008
Haifa, Israel
Conference Sponsors:
- International
Volume 1: Advanced Energy Systems; Advanced and Digital Manufacturing; Advanced Materials; Aerospace
ISBN:
978-0-7918-4835-7
PROCEEDINGS PAPER
A New Concept of a Large-Workspace Small-Size Bending Bellow Actuator
Alon Wolf,
Alon Wolf
Technion-Israel Institute of Technology, Haifa, Israel
Search for other works by this author on:
Ga´bor Ko´sa
Ga´bor Ko´sa
Technion-Israel Institute of Technology, Haifa, Israel
Search for other works by this author on:
Alon Wolf
Technion-Israel Institute of Technology, Haifa, Israel
Ga´bor Ko´sa
Technion-Israel Institute of Technology, Haifa, Israel
Paper No:
ESDA2008-59372, pp. 587-593; 7 pages
Published Online:
July 6, 2009
Citation
Wolf, A, & Ko´sa, G. "A New Concept of a Large-Workspace Small-Size Bending Bellow Actuator." Proceedings of the ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. Volume 1: Advanced Energy Systems; Advanced and Digital Manufacturing; Advanced Materials; Aerospace. Haifa, Israel. July 7–9, 2008. pp. 587-593. ASME. https://doi.org/10.1115/ESDA2008-59372
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Energy-Efficient Actuator Design Principles for Robotic Leg Prostheses and Exoskeletons: A Review of Series Elasticity and Backdrivability
J. Comput. Nonlinear Dynam (June,2023)
Design and Development of a Compact High-Torque Robotic Actuator for Space Mechanisms
J. Mechanisms Robotics (December,2017)
Linear Analysis of Uniformly Stressed, Orthotropic Cylindrical Shells
J. Appl. Mech (June,1986)
Related Chapters
QP Based Encoder Feedback Control
Robot Manipulator Redundancy Resolution
Fans and Air Handling Systems
Thermal Management of Telecommunications Equipment
Stable Analysis on Speed Adaptive Observer in Low Speed Operation
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)