The demand for miniaturized components is increasing in various industries, such as the biomedical, consumer electronics, optics and defense-related industries. The production of the micro/meso-scale components and parts in these industries is typically undertaken using MEMS-type photolithographic production techniques that have limitations in the materials and geometries that can be produced. However, numerous research efforts during the course of the last five to ten years have developed micro-scale EDM processes, micro-laser processes and micro-machining operations. In particular, the micro-machining processes have been demonstrated to provide a credible solution to the production of micro/mesoscale parts with complexes geometries in a broad range of materials. The development of mMTs is growing with the rapidly increasing demand for tighter tolerances. Traditionally, mMTs have been developed based on horizontal or vertical Cartesian co-ordinate machine tool structures. However, as the need for increased process flexibility and productivity is continuously being driven higher, there is a need to develop higher degree of freedom machining systems, including 4-axis and 5-axis machining centers. In this paper, the design of a low-cost, high-precision, high-speed 4/5-axis micro/meso machining center is presented as a cost-competitive alternative to existing open-form kinematics precision machining centers. A key departure from traditional machine tool design approach that has been adopted in this design is the utilization of closed-form kinematic structural design to create a high-stiffness, low-cost machine tool base. In addition, the lower thermal mass of the mMT base enhances rapid thermal washout in the structure and significantly reduces the thermal gradients in the structure. Consequently the thermal errors present in the structure are limited and simply and adequately handled using existing error compensation strategies. Initial results from an analytical and numerical investigation of the thermo-mechanical response of an innovative, kinematically closed-form inverted micro-machining center are presented. A coarse resolution parametric study was undertaken to evaluate the preferred preferred design space for maximum stiffness and minimum thermal distortion in low-cost, high precision, high-speed micro-machining centers. In addition, in order to facilitate part loading and unloading operations will be considered as a key design characteristic. A key result of this study has been the identification of a preferred design space for kinematic form selection, material selection and structural design options for increased rigidity, reduced thermal error and reduced production costs for flexible 4/5-axis micro/meso-scale machining centers. The proposed mMT design achieves a 3X increase in rigidity over a comparable tradition kinematically open horizontal mMT system.
Skip Nav Destination
ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis
July 7–9, 2008
Haifa, Israel
Conference Sponsors:
- International
Volume 1: Advanced Energy Systems; Advanced and Digital Manufacturing; Advanced Materials; Aerospace
ISBN:
978-0-7918-4835-7
PROCEEDINGS PAPER
High Stiffness Closed-Form Kinematic Structural Design of a Low-Cost 4/5-Axis Micro/Meso-Scale Inverted High-Speed Machining Center Available to Purchase
J. Rhett Mayor,
J. Rhett Mayor
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
Edward Kimn
Edward Kimn
Georgia Institute of Technology, Atlanta, GA
Search for other works by this author on:
J. Rhett Mayor
Georgia Institute of Technology, Atlanta, GA
Edward Kimn
Georgia Institute of Technology, Atlanta, GA
Paper No:
ESDA2008-59473, pp. 437-442; 6 pages
Published Online:
July 6, 2009
Citation
Mayor, JR, & Kimn, E. "High Stiffness Closed-Form Kinematic Structural Design of a Low-Cost 4/5-Axis Micro/Meso-Scale Inverted High-Speed Machining Center." Proceedings of the ASME 2008 9th Biennial Conference on Engineering Systems Design and Analysis. Volume 1: Advanced Energy Systems; Advanced and Digital Manufacturing; Advanced Materials; Aerospace. Haifa, Israel. July 7–9, 2008. pp. 437-442. ASME. https://doi.org/10.1115/ESDA2008-59473
Download citation file:
12
Views
Related Proceedings Papers
Manufacture of Microcantilever Sensors
IMECE2005
Related Articles
An Analytical Representation of Chip Area for Corner-Radiused Tools Under Both Depth-of-Cut and Feed Variations
J. Manuf. Sci. Eng (November,2000)
A Submicron Multiaxis Positioning Stage for Micro- and Nanoscale Manufacturing Processes
J. Manuf. Sci. Eng (June,2008)
Volumetric Error Compensation of Multi-Axis Laser Machining Center for Direct Patterning of Flat Panel Display
J. Manuf. Sci. Eng (February,2006)
Related Chapters
Accuracy of an Axis
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume I: Nominal Functioning and Geometric Accuracy
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Multiscale Methods for Lightweight Structure and Material Characterization
Advanced Multifunctional Lightweight Aerostructures: Design, Development, and Implementation