Nonlinear finite element analysis was performed to predict the thermal fatigue for leadless solder joint of TFBGA Package under accelerated TCT (Temperature Cycling Test). The solder joint was subjected to the inelastic strain that was generated during TCT due to the thermal expansion mismatch between the package and PCB. The solder was modeled with elastic-plastic-creep property to simulate the inelastic deformation under TCT. The creep strain rate of solder was described by double power law. The furthest solder away from the package center induced the highest strain during TCT was considered as the critical solder ball to be most likely damaged. The effects of solder meshing on the damage parameters of inelastic strain range, accumulated creep strain and creep strain energy density were compared to assure the accuracy of the simulation. The life prediction equation based on the accumulated creep strain and creep strain energy density proposed by Syed was used to predict the thermal fatigue life in this study. The agreement between the prediction life and experimental mean life is within 25 per cent. The effect of die thickness and material properties of substrate on the life of solder was also discussed.

This content is only available via PDF.
You do not currently have access to this content.