Localized heating during welding, followed by rapid cooling, usually generates residual stresses in the weld and in the base metal. Residual stresses in welding processes give significant problems in the accurate manufacture of structures because those stresses heavily induce the formation of cracks in the fusion zone in high strength steels. Therefore, estimating the magnitude and distribution of welding residual stresses and characterizing the effects of certain welding conditions on the residual stresses are deemed necessary. In this work, residual stresses and distortions on butt welded joints are numerically evaluated by means of finite element method. The FE analysis allows to highlight and evaluate the stress field and his gradient around the fusion zone of welded joints, higher than any other located in the surrounding area. Temperature-dependent material properties, welding velocity, external mechanism constraints, technique of ‘element birth and death’ and latent heat of fusion are also taken into account. Some numerical results are compared with experimental data showing a very good correlation.

This content is only available via PDF.
You do not currently have access to this content.