In this paper, an alternative analysis strategy based on a Wavelet-Galerkin scheme specially tailored to solve impact problems of functionally graded orthotropic thin plates subjected to low-velocity impact is presented. The plate considered to be circular, is assumed to be clamped on its lateral edge and has internal supports of rigid, elastic and viscoelastic types. The material properties of the plate are represented in the form of exponential functions of the thickness coordinate. A rigid spherical indenter impacts the plate. The study is based on the classical lamination plate theory (CLT). An advanced contact law of the Hertzian type is adopted. A nonlinear Volterra integral equation system is obtained in the following unknown functions: the impact force and the dynamic reaction forces at the rigid, elastic and viscoelastic internal point supports. Numerical simulations displaying the contact force, the transversal displacement and the penetration depth are graphically presented, and pertinent conclusions regarding the implications of incorporation of graded material systems are outlined.

This content is only available via PDF.
You do not currently have access to this content.