Mathematical modeling is the process of designing a model of a real system and conducting experiments with it for the purpose of understanding the behaviour of the system. Mathematical simulation is widely used for investigating and designing the compressors. Investigations of the processes of reciprocating compressors using mathematical models is an effective tool by high development of computing technique, which enables complicated problems to be solved with a minimal number of simplifying assumptions. A considerable number of previous works has been done on the mathematical modeling and simulation. The aims of the present work are to construct a model which is easy to understand, easy to detect errors in the process of building a model and easy to compute a solution. This project presents a simplified and effective mathematical model for the estimation of reciprocating compressor performance using personal computers that can be easily handled. The effect of various physical parameters, like, clearance volume, cylinder diameter, connecting rod length, crank radius, valve lift and other dimensions, etc., and operating parameters, like, discharge pressure, compressor speed, etc., on thermodynamic behaviour of compressor in working condition has been analysed. The model has been developed for obtaining cylinder pressure, cylinder volume, cylinder temperature, valve lift and resultant torque at different crank angles and free air delivered and indicated power of the compressor.

This content is only available via PDF.
You do not currently have access to this content.