In recent years, the desire for increased engine performance has led to technology that increasingly relies on robust and reliable turbocharging solutions. The rotor-bearing system (RBS) operates under extreme oil conditions of low viscosity, high temperatures, low HTHS (high temperature high shear) value and low pressure, while the demand for maximum turbocharger speed and variable geometry technology continues to increase. The rotordynamics instability is a potential issue and the development of RBS is becoming a challenge for design optimization at the development stage. It is further complicated by a lack of industrial standards to guide design practices related to the dynamics and the effort to combine high performance with low cost. This paper concerns the progress on nonlinear dynamic behavior modeling of turbocharger rotor-radial bearing system with fully floating bearing design. A developed fluid dynamics code predicts bearing rotational speed, operating inner and outer bearing clearances, effective oil viscosity taking into account the shear effect and hydrostatic load. The data are input to a rotordynamics code which predicts nonlinear lateral response (total shaft motion) of the rotor-bearing system. The model is validated with a high speed turbocharger RBS of 7.9 mm journal diameter running up to 160,000 rpm (maximum speed) with oil 0W30, 100 °C oil inlet temperature and 4 bar oil feed pressure. The test is conducted on a rotordynamics technology cell. An advanced data acquisition system is implanted and a powerful code is developed for automated data reduction. Prediction/test data show good correlation with the respect of synchronous response and total motion. The predictive model helps the development of high performance RBS with faster development cycle times and increased reliability.
Skip Nav Destination
ASME 8th Biennial Conference on Engineering Systems Design and Analysis
July 4–7, 2006
Torino, Italy
ISBN:
0-7918-4249-5
PROCEEDINGS PAPER
Nonlinear Dynamic Behavior of Rotor-Bearing Systems Involving Two Hydrodynamic Oil Films in Series: Prediction and Test Application to High-Speed Turbochargers
Kostandin Gjika,
Kostandin Gjika
Honeywell Turbo Technologies, Thaon-les-Vosges Cedex, France
Search for other works by this author on:
Chris Groves
Chris Groves
Honeywell Turbo Technologies, Thaon-les-Vosges Cedex, France
Search for other works by this author on:
Kostandin Gjika
Honeywell Turbo Technologies, Thaon-les-Vosges Cedex, France
Chris Groves
Honeywell Turbo Technologies, Thaon-les-Vosges Cedex, France
Paper No:
ESDA2006-95792, pp. 393-399; 7 pages
Published Online:
September 5, 2008
Citation
Gjika, K, & Groves, C. "Nonlinear Dynamic Behavior of Rotor-Bearing Systems Involving Two Hydrodynamic Oil Films in Series: Prediction and Test Application to High-Speed Turbochargers." Proceedings of the ASME 8th Biennial Conference on Engineering Systems Design and Analysis. Volume 2: Automotive Systems, Bioengineering and Biomedical Technology, Fluids Engineering, Maintenance Engineering and Non-Destructive Evaluation, and Nanotechnology. Torino, Italy. July 4–7, 2006. pp. 393-399. ASME. https://doi.org/10.1115/ESDA2006-95792
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
SUPERCRITICAL CARBON DIOXIDE LUBRICATED HYBRID JOURNAL BEARING: CFD ANALYSIS AND OPTIMIZATION
J. Tribol (January,0001)
Compliant Hybrid Journal Bearings Using Integral Wire Mesh Dampers
J. Eng. Gas Turbines Power (March,2009)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Compressive Deformation of Hot-Applied Rubberized Asphalt Waterproofing
Roofing Research and Standards Development: 10th Volume
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential