This work explores the possibility of using a non-structured algorithm as a sideslip angle valuer: on the basis of a preliminary numerical analysis, a neural network was designed and trained with experimental signals of lateral acceleration, vehicle speed, yaw rate and steer angle. The network was applied to experimental data in order to verify its capability of self-adaptation to changes in friction coefficient and to provide accurate estimations for manoeuvres sensibly different from the ones used during the training stage. The simple architecture joined with an appropriate training set conferred good self-adaptation properties to the neural network which was able to provide satisfying estimation of side slip angle for a wide range of manoeuvres and different friction conditions.

This content is only available via PDF.
You do not currently have access to this content.