In this work the effect of the Squeeze Film Damping on MEMS structures is studied. When a device is being designed, it is very important to preview with good approximation its dynamic behavior. However, as the simulation of the micro-systems involves different physical domains, the analysis with numerical methods can turn out remarkably onerous. Moreover the Reduced Order Modeling is preferable when, due to technological reasons, the membrane is built with several holes and the geometrical FEM coupled model will be computational heavy. Therefore Reduced Order Models allow to integrate in a total mathematical model the main parameters, obtained by the numerical analysis, considering the behavior of the structure analyzed in different physical domains. In the present work the non-linear coefficients of equivalent damping and stiffness by finite element models are investigated to be exported in a reduced order model. By means of numerical finite element calculation is studied the sensitivity analysis related to design parameters such as dimension of the plate and the presence, or lack, of holes.

This content is only available via PDF.
You do not currently have access to this content.