This paper presents the design and experimental analysis of a compact Diffusion Absorption Air Cooler (DAAC) system, in which the Diffusion Absorption Refrigeration (DAR) technology is utilized. The system uses a bubble pump to replace the mechanical pump, uses three-component working fluid (NH3+H2O+He), and operates under the same system pressure level. Hence, it is quiet, long lasting and environmental friendly. To investigate the practicality of using the DAAC system for regional air conditioning, the thermodynamic model is derived to guide the system design first, and then a DAAC experimental prototype is built for validation. Since the bubble pump is the kernel component, a series of experiments are conducted to investigate the bubble pump performance. From the experimental results under various operation conditions, it is found that the bubble pump dominates the system performance and should be designed carefully to match the designed cooling capacity and operation condition. The experimental results also show that the DAAC can work smoothly under various ambient temperatures when the input power of bubble pump is over 200W.

This content is only available via PDF.
You do not currently have access to this content.