Circulation control techniques have a long history of applications to fixed wing aircraft. General aviation has used circulation control to delay flow separation and increase the maximum lift coefficient achievable with a given airfoil. These techniques have been gradually expanded to other applications, such as ground vehicles, to reduce drag. Circulation control technology can, potentially, be applied also to each blade of the main rotor in a helicopter, in order to increase the lift capacity of the rotor. Applications of circulation control technologies to fixed wing aircraft have demonstrated the potential of a three-fold increase in the lift coefficient, as compared to a conventional airfoil. This finding would suggest that a rotorcraft equipped with circulation control of the main rotor blades could, conceivably, lift up a payload that is approximately three times heavier than the maximum lift capacity of the same helicopter without circulation control. Alternatively, circulation control could reduce the required rotor diameter by up to 48%, if the maximum lift capacity remains unaltered. A High Lift, Circulation Controlled Helicopter Blade will be undergoing initial testing in the subsonic wind tunnel facility at West Virginia University. Two-dimensional elliptic airfoil models with air blowing slots for circulation control will be used as specimens in these tests in order to determine the aerodynamic changes, especially in lift and drag forces, achievable with various blowing slot configurations. Based on the results of the wind tunnel testing, an improved, detailed design will be developed for the entire main rotor of a helicopter with circulation control.

This content is only available via PDF.
You do not currently have access to this content.