In this paper an augmented higher order global-local theories are presented to analyze the laminated plate problems coupled bending and extension. The in-plane displacement field is composed of a mth-order (9 > m > 3) polynomial of global coordinate z in the thickness direction and 1,2-3 order power series of local coordinate ζk in the thickness direction of each layer and a nth-order (5 > n >= 0) polynomial of global coordinate z in the thickness direction of transverse deflection. The transverse shear stresses can satisfy continuity at interfaces, and the number of unknowns is independent of the layer numbers of the laminate. Based on this theory, a refined three-node triangular element satisfying the requirement of C1 weak-continuity is presented. Numerical results show that present theory can be used to predict accurately in-plane stresses and transverse shear stresses from direct use of the relations of stresses and strains without any postprocessing method. However, to accurately obtain transverse normal stresses, the local equilibrium equation approach in one element is employed herein. It is effective when the number of layers of laminated plates is more than five and up to fourteen, and it can solve the problems for coupling bending and extension. It is also shown that the present refined triangular element possesses higher accuracy.

This content is only available via PDF.
You do not currently have access to this content.