Thermal buckling analysis of rectangular functionally graded plates with initial geometric imperfections is presented in this paper. It is assumed that the non-homogeneous mechanical properties vary linearly through the thickness of the plate. The plate is assumed to be under various types of thermal loadings, such as the uniform temperature rise and nonlinear temperature gradient through the thickness. A double-sine function for the geometric imperfection along the x and y-directions is considered. The equilibrium equations are derived using the third order shear deformation plate theory. Using a suitable method, equilibrium equations are reduced from 5 to 2 equations. The corresponding stability equations are established. Using these equations accompanied by the compatibility equation yield to the buckling loads in a closed form solution for each loading case. The results are compared with the known data in the literature.

This content is only available via PDF.
You do not currently have access to this content.