The tendency in the world energy demand seems clear: it can only grow. The energetic industry will satisfy this demand-despite all its dialectic about new technologies-at least medium term mostly with current fossil fuel technologies. In this picture from an engineer’s point of view, one of the primary criterions for mitigating the effects of increasing atmospheric concentration of CO2 is to restrict the CO2 fossil fuel emissions into the atmosphere. This paper is focused on the analysis of different CO2 capture technologies for power plants. Indeed, one of the most important goal to concentrate on is the CO2 capture energy requirements, as it dictates the net size of the power plant and, hence, the net cost of power generation with CO2 avoidance technologies. Here, the Author presents a critical review of different CO2 absorption capture technologies. These technologies have been widely analyzed in the literature under chemical and economic points of view, leaving their impact on the energy power plant performance in a second plan. Thus, the central question examined in this paper is the connection between abatement capability and its energetic requirements, which seriously decrease power generation efficiency. Evidencing that the CO2 capture needs additional technical effort and establishing that further developments in this area must be constrained by reducing its energy requirements. After a comprehensive literature revision, six different chemical absorption methods are analyzed based on a simplified energetic model, in order to account for its energetic costs. Furthermore, an application case study is provided where the different CO2 capture systems studied are coupled to a natural gas cogeneration power plant.

This content is only available via PDF.
You do not currently have access to this content.