Vector bond graphs have been systematically applied to the modeling of prosthesis for a partially impaired hand. The partial impairment considered covers a category of the hand that has lost one or more fingers but retains the ability of its remaining natural fingers. The fingers and their prosthetic extensions are considered as rigid links. Rotation matrices which specify orientation of finger links are obtained from respective angular velocities. String-tube mechanism used to actuate prosthetic joints is modeled with the connection to joint variables of the mechanism. The vector bond graph approach enables the modeling of three dimensional movement of the hand mechanism. An example of a two joint string-tube actuated prosthetic mechanism is presented to describe the construction of the vector bond graph model. Systematic derivation of dynamics from the vector bond graphs is shown. The approach based on vector bond graphs presented here is useful for simulations and control systems design of such biomechanical systems.

This content is only available via PDF.
You do not currently have access to this content.