Intramedullary nails are tube-like implantable medical devices that are commonly used to treat long bone fractures. Interlocking screws, that pass from one side of the bone to the other, through holes at either end of the nail, provide additional stability. Newer designs of intramedullary nails have screws placed more extremely. The aim of this study was to use mechanics to analytically investigate how extreme locking of intramedullary nails affects the overall biomechanics of intramedullary nail systems. The nail was modelled as a tube of various sizes. The deflection of the nail from axial compression, bending and torsion was determined as the working length of the nail was varied. The screw was modelled as a simple beam, built-in at both ends. The deflection of the screw was determined as the medullary width was varied. Placing interlocking screws more extremely in intramedullary nails increases the working length of the nail and leads to the use of longer screws, since at the bone extremities, the width of the medullary cavity increases. An increased working length leads to increased rotation of the nail. The use of longer screws leads to increased deflection of the screw and an increased bending moment that has to be resisted by the bone cortex. Extreme locking of intramedullary nails changes the biomechanics of the nail system, and may well have clinical implications in terms of fracture healing.
Skip Nav Destination
ASME 7th Biennial Conference on Engineering Systems Design and Analysis
July 19–22, 2004
Manchester, England
ISBN:
0-7918-4175-8
PROCEEDINGS PAPER
How Extreme Locking of Intramedullary Nails Affects the Overall Biomechanics of Intramedullary Nail Systems
Duncan E. T. Shepherd,
Duncan E. T. Shepherd
University of Birmingham, Birmingham, UK
Search for other works by this author on:
Alan J. Johnstone
Alan J. Johnstone
Woodend Hospital, Aberdeen, UK
Search for other works by this author on:
Duncan E. T. Shepherd
University of Birmingham, Birmingham, UK
Alan J. Johnstone
Woodend Hospital, Aberdeen, UK
Paper No:
ESDA2004-58162, pp. 399-406; 8 pages
Published Online:
November 11, 2008
Citation
Shepherd, DET, & Johnstone, AJ. "How Extreme Locking of Intramedullary Nails Affects the Overall Biomechanics of Intramedullary Nail Systems." Proceedings of the ASME 7th Biennial Conference on Engineering Systems Design and Analysis. Volume 3. Manchester, England. July 19–22, 2004. pp. 399-406. ASME. https://doi.org/10.1115/ESDA2004-58162
Download citation file:
4
Views
Related Proceedings Papers
Related Articles
An Effective Approach for Optimization of a Composite Intramedullary Nail for Treating Femoral Shaft Fractures
J Biomech Eng (December,2015)
Biomechanical Factors Affecting Fracture Stability and Femoral Bursting in Closed Intramedullary Rod Fixation of Femur Fractures
J Biomech Eng (May,1985)
High Speed Fracture Fixation: Assessing Resulting Fixation Stability and Fastener Withdrawal Strength
J Biomech Eng (September,2013)
Related Chapters
Accuracy of an Axis
Mechanics of Accuracy in Engineering Design of Machines and Robots Volume I: Nominal Functioning and Geometric Accuracy
Singularity Analysis for 5-5R Parallel Manipulator Based on Screw Theory
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Propeller Cavitation Noise Radiated from Single and Twin-Screw Cargo Liners: CFD Prediction and Full Scale Validation
Proceedings of the 10th International Symposium on Cavitation (CAV2018)