The energy release rates in human cortical bone are investigated using a hybrid method of experimental and finite element modeling techniques. An explicit finite element analysis was implemented with an energy release rate calculation for evaluating this important fracture property of bones. Comparison of the critical value of the energy release rate, Gc, shows good agreement between the finite element models and analytical solutions. The Gc was found to be approximately 820–1150 J/m2 depending upon the samples. Specimen thickness appears to have little effect on the plane strain condition and pure mode I assumption. Therefore the energy release rate can be regarded as a material constant and geometry independent and can be determined with thinner specimens. In addition, the R curve resulting from the finite element models during slow crack growth shows slight ductility of the bone specimen that indicates an ability to resist crack propagation. Oscillations were found at the onset of the crack growth due to the nodal releasing application in the models. In this study light mass-proportional damping was used to suppress the noises. Although this techniques was found to be efficient for this slow crack growth simulation, other methods to continuously release nodes during the crack growth would be recommended for rapid crack propagation.

This content is only available via PDF.
You do not currently have access to this content.