Blast loading can induce a substantial amount of damage in structural elements such as, beams and plates, the shape and extent of which is quite difficult to predict. This work investigates the changes in the deformation of a square plate that undergoes a constant weight explosive detonation with changing plate thickness. As a first step, free field explosion is investigated. After the calculation of the pressures and forces acting on the plate, and the positive phase duration of the pulse, the non-dimensional impulse values are found. Plate tearing is predicted by using these non-dimensional impulse values. The same plate is modelled and solved for the numerical prediction of the midpoint deflection. Using this procedure, the effect of the plate thickness is investigated for the deformation of plates. The results of the theoretical and numerical solutions are then compared with the experimental findings.

This content is only available via PDF.
You do not currently have access to this content.