Impulse-momentum methods of analysis developed for rigid body impacts are applied in this paper to predict forces acting in a simplified spacecraft model during a touchdown impact. This paper presents both analytic and experimental effort for a complex, multi-body impacting system that include friction and deformable elements. Specifically, we analyze a vertically moving guided mass representing a landing spacecraft to which is attached a telescopic, energy-absorbing leg. The landing gear, which is used in our study, employs crushable material in the leg, strut, and foot plus surface friction to absorb the landing shock. The experimental setup consists of simplified landing system, and accelerometers for the dynamic measurement. Acceleration data collected via data acquisition system is converted to the crushing, normal and tangential velocities. The results showed good agreement between the analysis and experiment for the first phase of motion. The derivation of limiting condition equations for all possible alternatives for the second phase is incomplete. We conclude that the challenges of deriving and testing for all motion phase ending events make the impulse-momentum method inferior to straight-forward dynamic simulation as a design tool.
Skip Nav Destination
ASME 7th Biennial Conference on Engineering Systems Design and Analysis
July 19–22, 2004
Manchester, England
ISBN:
0-7918-4174-X
PROCEEDINGS PAPER
Impulse-Momentum in Spacecraft Landing: Analysis and Experiment
Chung-Ook Chong,
Chung-Ook Chong
Illinois Institute of Technology, Chicago, IL
Search for other works by this author on:
Rollin Dix
Rollin Dix
Illinois Institute of Technology, Chicago, IL
Search for other works by this author on:
Chung-Ook Chong
Illinois Institute of Technology, Chicago, IL
Rollin Dix
Illinois Institute of Technology, Chicago, IL
Paper No:
ESDA2004-58054, pp. 15-20; 6 pages
Published Online:
November 11, 2008
Citation
Chong, C, & Dix, R. "Impulse-Momentum in Spacecraft Landing: Analysis and Experiment." Proceedings of the ASME 7th Biennial Conference on Engineering Systems Design and Analysis. Volume 2. Manchester, England. July 19–22, 2004. pp. 15-20. ASME. https://doi.org/10.1115/ESDA2004-58054
Download citation file:
14
Views
Related Proceedings Papers
Related Articles
Development of an Apparatus to Produce Fractures From Short-Duration High-Impulse Loading With an Application in the Lower Leg
J Biomech Eng (January,2010)
Analysis of a Semi-Levered Suspension Landing Gear With Some Parametric Study
J. Dyn. Sys., Meas., Control (September,1984)
Effect of Friction on the Performance of an Octostrut Vibration Isolation Platform
J. Vib. Acoust (October,2008)
Related Chapters
Materials
Design and Application of the Worm Gear
Tribology-by-Design for Bearing and Gear Steel Tribology
Bearing and Transmission Steels Technology
Wireless Data Acquisition System Design Based on Matlab and MCU
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)