Electrical Capacitance Tomography (ECT) has been used over a number of years to measure concentration distribution, and more recently velocity distribution, in two-phase flows. ECT is non-intrusive, and the reconstruction of the concentration and velocity distribution can be undertaken in real time and over an arbitrary number of zones in the flow cross-section. In this paper the concept of a ‘virtual instrument’ is introduced where zones of the image can be structured for comparison with other measurements. Numerical agreement with gamma-ray density measurements is shown to be excellent in slug and stratified flows. We present a series of measurements undertaken in complex oil/gas slug flows in a large flow loop. We present a variety of 2-D cross-sectional images, time series velocity and concentration graphs and 3-D contour plots. The good temporal and spatial resolution of ECT throws an extensive new light on these otherwise difficult to measure dynamic flow structures. In particular with bubbly-slug structures known as ‘ghosts’ ECT shows clearly that they are in fact bubbly waves which have extended ‘wings’ up and around the pipe.

This content is only available via PDF.
You do not currently have access to this content.