Update search
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
Filter
- Title
- Author
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- Issue
- Volume
- References
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keyword: Vortex
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ES2010, ASME 2010 4th International Conference on Energy Sustainability, Volume 1, 255-263, May 17–22, 2010
Paper No: ES2010-90324
... In this work, we present a thorough reaction engineering analysis on the modeling of a vortex-flow reactor to show that commonly practiced one-plug reactor approach is not sufficient to explain the flow behavior inside the reactor. Our study shows that N-plug flow reactors in series is the best...
Abstract
In this work, we present a thorough reaction engineering analysis on the modeling of a vortex-flow reactor to show that commonly practiced one-plug reactor approach is not sufficient to explain the flow behavior inside the reactor. Our study shows that N-plug flow reactors in series is the best approach in predicting the flow dynamics based on the computational fluid dynamics (CFD) simulations. We have studied the residence time distribution using CFD by two different methods. The residence time distribution characteristics are calculated by approximating the real reactor as N-ideal reactors in series, and then estimated the number of ideal reactors in series for the model. We have validated our CFD model by comparing the simulation results with experimental results. Finally, we have done a parametric study with a different sweeping gas to identify the best screening gas to avoid carbon deposition inside the vortex-flow reactor. Our results have shown that hydrogen is a better screening gas than argon.