Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Format
Article Type
Subject Area
Topics
Date
Availability
1-1 of 1
Keywords: Ionic Liquid
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ES2013, ASME 2013 7th International Conference on Energy Sustainability, V001T05A002, July 14–19, 2013
Paper No: ES2013-18145
... ionic liquids (ILs) as a HTF in CSP system. ILs possesses superior thermophysical properties compare to currently using HTF such as Therminol VP-1 (mixture of biphenyl and diphenyl oxide) and thermal oil. However, advanced thermophysical properties of ILs can be achieved by dispersing small volume...
Abstract
Next generation Concentrating Solar Power (CSP) system requires high operating temperature and high heat storage capacity heat transfer fluid (HTF), which can significantly increase the overall system efficiency for power generation. In the last decade several research going on the efficacy of ionic liquids (ILs) as a HTF in CSP system. ILs possesses superior thermophysical properties compare to currently using HTF such as Therminol VP-1 (mixture of biphenyl and diphenyl oxide) and thermal oil. However, advanced thermophysical properties of ILs can be achieved by dispersing small volume percentage of nanoparticles forming nanofluids, which is called Nanoparticle Enhanced Ionic Liquids (NEILs). In the present study NEILs were prepared by dispersing 0.5% Al 2 O 3 nanoparticles (spherical and whiskers) in N-butyl-N, N, N-trimetylammonium bis(trifluormethylsulfonyl)imide ([N 4111 ][NTf 2 ]) IL. Viscosity, heat capacity and thermal conductivity of NEILs were measured experimentally and compared with the existing theoretical models for liquid–solid suspensions. Additional, the convective heat transfer experiment was performed to investigate thermal performance. The thermal conductivity of NEILs enhanced by ∼5%, heat capacity enhanced by ∼20% compared to the base IL, which also gives 15% enhancement in heat transfer performance.