Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-17 of 17
Solar energy systems
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ES2017, ASME 2017 11th International Conference on Energy Sustainability, V001T11A003, June 26–30, 2017
Paper No: ES2017-3276
Abstract
Researchers are committed to develop robust and responsive technologies for renewable energy sources to avert from reliance on fossil fuels, which is the main cause of global warming and climate change. Solar energy based renewable energy technologies are valued as an important substitute to bridge gap between energy demand and generation. However, due to varying and inconsistent nature of solar energy during weather fluctuations, seasonal conditions and night times, the complete utilisation of technology is not guaranteed. Therefore, thermal energy storage (TES) system is considered as an imperative technology to be deployed within solar energy systems or heat recovery systems to maximise systems efficiency and to compensate for varying thermal irradiance. TES system can capture and store the excess amount of thermal energy during solar peak hours or recover from systems that would otherwise discard this excess amount of thermal energy. This stored energy is then made available to be utilised during solar off peak hours or night times. Phase change material (PCM) based TES system is appraised as a viable option due to its excellent adoption to solar and heat recovery systems, higher thermal storage density and wide range of materials availability. However, due to its low thermal conductivity (≅ 0.2 W/mK), the rapid charging and discharging of TES system is a challenge. Therefore, there is a need for efficient and responsive heat exchange mechanism to boost the heat transfer within PCM. In this study, transient analysis of two-dimensional computational model of vertical shell and tube based TES system is conducted. Commercial grade paraffin (RT44HC) is employed in shell as thermal storage material due to its higher thermal storage density, thermo-physical stability and compatibility with container material. Water is made to flow in tubes as heat transfer fluid. In this numerical study, the parametric investigations are performed to determine the enhancement in charging rate, discharging rate and thermal storage capacity of TES system. The parametric investigations involve geometrical orientations of tubes in shell with and without fins, inlet temperature and volume flow rate of HTF. It is evident from numerical results that due to increase in effective surface area for heat transfer by vertical fins, the charging and discharging rate of paraffin based TES system can be significantly increased. Due to inclusion of vertical fins, conduction heat transfer is dominant mode of heat transfer in both charging and discharging processes. Furthermore, vertical fins do not restrict natural convection or buoyancy driven flow as compared to horizontal fins. Similarly, the inlet temperature has a noticeable impact on both charging and discharging process. In melting process, the sensible enthalpy is boosted due to rise in inlet temperature and thus the whole system thermal storage capacity is enhanced. Likewise, the effect of volume flow rate of HTF on charging and discharging rate is moderate as compared to inlet temperature of HTF. The numerical results are validated by experimental results. To conclude, these findings present an understanding into how to increase charging and discharging rate of TES system so as to provide feasible design solutions for widespread domestic and commercial utilisation of TES technology.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T04A020, June 26–30, 2016
Paper No: ES2016-59619
Abstract
The central receiver power tower (CRPT) with a particle heating receiver (PHR) is a form of concentrating solar power (CSP) system with strong potential to achieve high efficiency at low cost and to readily incorporate cost-effective thermal energy storage (TES). In such a system, particulates are released into the PHR, and are heated to high temperature by concentrated solar radiation from the associated heliostat field. After being heated, the particles will then typically flow into the hot bin of the TES. Particulates accumulated in the hot bin can flow through a heat exchanger to energize a power generation system or be held in the hot TES storage bin for later use such as meeting a late afternoon peak demand or even overnight generation. Particles leaving the heat exchanger are held in the low temperature bin of the TES. A critical component in such a PHR system is the particle lift system, which must transport the particulate from the lower temperature TES bin back to the PHR. In our baseline 60 MW-thermal (MW-th) design, the particulate must be lifted around 70 m at the rate of 128 kg/s. For the eventual commercial scale system of a 460 MW-th design the particulate must be lifted around 138 m at the rate of 978 kg/s. The obvious demands on this subsystem require the selection and specification of a highly efficient, economical, and reliable lift design. After an apparently exhaustive search of feasible alternatives, the skip hoist was selected as the most suitable general design concept. While other designs have not been dismissed, our currently preferred somewhat more specific preliminary design employs a Kimberly Skip (KS) in a two-skip counterbalanced configuration. This design appears to be feasible to fabricate and integrate with existing technology at an acceptably low cost per MW-th and to promise high overall energy use efficiency, long service life, and low maintenance cost. A cost and performance model has been developed to allow optimization of our design and the results of that study are also presented. Our developed design meets the relevant criteria to promote cost effective CSP electricity production.
Proceedings Papers
Proc. ASME. ES2015, Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials, V001T05A019, June 28–July 2, 2015
Paper No: ES2015-49489
Abstract
This paper establishes the design requirements for the development and testing of direct supercritical carbon dioxide (sCO2) solar receivers. Current design considerations are based on the ASME Boiler and Pressure Vessel Code (BPVC). Section I (BPVC) considers typical boilers/superheaters (i.e. fired pressure vessels) which work under a constant low heat flux. Section VIII (BPVC) considers pressure vessels with operating pressures above 15 psig [2 bar] (i.e. unfired pressure vessels). Section III, Division I – Subsection NH (BPVC) considers a more detailed stress calculation, compared to Section I and Section VIII, and requires a creep-fatigue analysis. The main drawback from using the BPVC exclusively is the large safety requirements developed for nuclear power applications. As a result, a new set of requirements is needed to perform detailed thermal-structural analyses of solar thermal receivers subjected to a spatially-varying, high-intensity heat flux. The last design requirements document of this kind was an interim Sandia report developed in 1979 (SAND79-8183), but it only addresses some of the technical challenges in early-stage steam and molten-salt solar receivers but not the use of sCO2 receivers. This paper presents a combination of the ASME BPVC and ASME B31.1 Code modified appropriately to achieve the reliability requirements in sCO 2 solar power systems. There are five main categories in this requirements document: Operation and Safety, Materials and Manufacturing, Instrumentation, Maintenance and Environmental, and General requirements. This paper also includes the modeling guidelines and input parameters required in computational fluid dynamics and structural analyses utilizing ANSYS Fluent, ANSYS Mechanical, and nCode Design Life. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of sCO 2 receivers.
Proceedings Papers
David E. Lee, Bill Nesmith, Terry Hendricks, Juan Cepeda-Rizo, Michael Petach, Emanuel Tward, Cecilia Penera, John Pohner, Scott Whitney, Jonathan Grandidier
Proc. ASME. ES2015, Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials, V001T03A005, June 28–July 2, 2015
Paper No: ES2015-49658
Abstract
The FSPOT-X Project, focused on maximizing exergy generated from AM1.5 sunlight, targets an overall system efficiency of >35%. The objective hybrid power system will deliver grid-ready AC power while simultaneously providing thermal energy storage for dispatchable electrical power generation in post sunset conditions. The challenging system-level requirements flow-down critical temperature differential and thermal transport requirements to multiple system components and their interfaces. By integrating and demonstrating multiple technologies, the FSPOT-X hybrid power system seeks to efficiently convert photons to electrons maximizing heat transfer efficiency across system element interfaces. These include: I1) capturing all incident sunlight from the solar concentrator in a receiver cavity to maximize energy generation from the CPV cells, I2) extracting PV thermalization heat from the receiver and into the reflux chamber, I3) moving heat from the reflux chamber through the thermal transfer interface, I4) using the thermal transfer interface to shift heat into the TAPC’s hot heat exchanger, I5) storing excess unused heat in phase change material, and I6) disposal of waste heat at the system level. For each of these thermal interfaces, effective and efficient technical means are being used and applied in order to maximize overall system efficiency for delivery of a next generation cost-effective and market-ready solar power system.
Proceedings Papers
Matthew Golob, Sheldon Jeter, Said I. Abdel-Khalik, Dennis Sadowski, Hany Al-Ansary, Abdelrahman Elleathy
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A054, June 30–July 2, 2014
Paper No: ES2014-6679
Abstract
The advantages of high temperature central receiver particle heating solar heat supply systems in concentrator solar power (CSP) have been recognized in recent years. The use of particulate as the collection medium provides two critical advantages: (1) Ordinary particulate minerals and products will allow higher collection temperatures approaching 1000°C compared with conventional molten salts, which are limited to around 650°C, and (2) the low cost high temperature particulate material can also be used as the storage medium in a highly cost effective thermal energy storage (TES) system. The high operating temperature allows use of high efficiency power conversion systems such as supercritical steam in a vapor power cycle or supercritical carbon dioxide in a Brayton cycle. Alternatively, a lower cost gas turbine can be used for the power conversion system. High conversion efficiency combined with inexpensive TES will yield a highly cost effective CSP system. The 300 kW-th prototype is being constructed as a solar heat supply system only, deferring the power conversion system for later demonstration in a larger integrated CSP system. This paper describes the general design and development efforts leading to construction of the 300 kW prototype system located in the Riyadh Techno Valley development near King Saud University in Riyadh, Saudi Arabia, which is the first sizeable solar heat supply system purposely designed, and constructed as a particle heating system. An important component in a particle heating system is the particle heating receiver (PHR), which should be durable and efficient while remaining cost-effective. A critical enabling technology of the PHR being implemented for this project was invented by researchers on our team. In our version of the PHR, the particulate flows downwards through a porous or mesh structure where the concentrated solar energy is absorbed. The porous structure will reduce the speed of the falling particulate material allowing a large temperature rise on a single pass. The new design will also increase the absorption of solar energy and mitigate convective heat loss and particle loss. Other innovative aspects of this design include low cost thermal energy storage bins and a cost effective particle to working fluid heat exchanger. Certain features of these design elements are subjects of ongoing patent applications. Nevertheless, the overall design and the development process of the prototype system is presented in this paper.
Proceedings Papers
R. C. Knott, D. L. Sadowski, S. M. Jeter, S. I. Abdel-Khalik, H. A. Al-Ansary, Abdelrahman El-Leathy
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A041, June 30–July 2, 2014
Paper No: ES2014-6586
Abstract
Using solid particulates as a heat absorption and transfer medium in solar concentrated systems is a solution for collecting and storing thermal energy. Solid particulates, such as sand, are relatively inexpensive and are much less corrosive and expensive to maintain than molten salts. Small particles may be stored easily, and can be used as a heat transfer medium for use with a suitable heat exchanger. Despite their anticipated low cost, excessive degradation of the particulates requiring replenishment or disrupting operation could impair the overall economics. Consequently, the durability of the particulates should be verified. Responding to this need, this study examines the durability of solid particulates as a heat transfer medium in a closed cycle for concentrated solar power central receiver systems. Specifically, this study analyzes the combination of attrition and sintering of sand with varying temperatures. Attrition is the reduction of a particle’s mass and sintering is a process of fusing two or more particles together to form a larger agglomerate. In a closed cycle, particularly for a concentrated solar power tower, a particle will experience typical temperatures from 600°C to 1000°C. The increase in temperature may change the physical characteristics of the particles and along with any impurities may promote lower softening point bonding. Thus, it is important to investigate particle durability at high temperatures. The experimental procedure used in this investigation involves heating and abrading particulates of a known mass and size distribution to temperatures between 600°C and 1000°C, and also at 25°C to observe attrition only. The testing is conducted using a specially designed experimental apparatus described below. The heated particulates are contained in a metal cylinder. Inside the cylinder is another cylinder made of a porous silicon carbide foam. As the temperature is held constant, the particulate sample is rotated 180 degrees around a horizontal axis every 15 seconds from a low position to a higher position so that the particulates fall and abrade against each other. This process is repeated for a known number of cycles (many thousands). Then the resulting particulate size distribution is measured to determine the amount of attrition and sintering occurred during the experiment. The particulates tested are various types of sand with varying mean diameters and composition, along with a ceramic particulate similar to hydraulic fracturing proppants. Sample composition, sample size distribution, and temperature will be used to establish parameters for rates of attrition and sintering. These rates will be used to predict the behavior of particulates in a concentrated solar power tower closed cycle.
Proceedings Papers
Proc. ASME. ES2013, ASME 2013 7th International Conference on Energy Sustainability, V001T01A013, July 14–19, 2013
Paper No: ES2013-18409
Abstract
Among all types of concentrators, compound parabolic concentrators (CPCs) have been designed as stationary solar collectors for relative high temperature operations with high cost effectiveness. The CPCs are potentially the favorable option for solar power systems and high temperature solar thermal system. This paper provided a review on studies of CPCs in solar thermal applications. It covered basic concepts, principles, and design of CPCs. It also reviewed optical models and thermal models of CPCs, as well as the thermal applications of CPCs. The challenges were also summarized.
Proceedings Papers
Proc. ASME. ES2013, ASME 2013 7th International Conference on Energy Sustainability, V001T03A010, July 14–19, 2013
Paper No: ES2013-18292
Abstract
The ability of thermal energy storage (TES) to avoid the major intermittency issues associated with solar photovoltaic power generation is a key differentiator for concentrating solar power (CSP) systems. Infinia Corporation is a pioneer in phase change salt TES systems, with one DOE contract based on heat pipes [1], and a second DOE contract that uses an inherently simpler, patented sodium pool boiler that is integral with the TES salt. This paper describes the Phase 1 results for that second contract, which is targeted for cost effective extended duration storage for CSP systems up to a level that can provide baseload power, with a particular focus on dish Stirling systems.
Proceedings Papers
Proc. ASME. ES2012, ASME 2012 6th International Conference on Energy Sustainability, Parts A and B, 615-622, July 23–26, 2012
Paper No: ES2012-91459
Abstract
The American Society of Mechanical Engineers (ASME) Performance Test Codes (PTCs) have provided the power industry with the premier source of guidance for conducting and reporting performance tests of their evolving base technologies of power producing plants and supporting components. With an overwhelming push for renewable energy in recent years, ASME PTCs are in the development of similar standards for the testing of concentrating solar thermal technologies based power plants by the formation of a committee to develop “PTC 52, Performance Test Code on Concentrated Solar Plants”, on July 2009. The U.S. Department of Energy’s (DOE) SunShot Initiative goal is to reduce costs and eliminate market barriers to make large-scale solar energy systems cost-competitive with other forms of energy by the end of the decade. The ASME PTC-52 similarly removes critical barriers hindering deployment and speeds the implementation of concentrating solar power technologies by reducing commercial risk by facilitating performance testing procedures with quantified uncertainty. As with any commercialization of power producing technologies, clearly defining risk and providing methods to mitigate those risks are essential in providing the confidence necessary to secure investment funding. The traditional power market accomplishes this by citation of codes and standards in contracts; specifically ASME PTCs which supply commercially accepted guidelines and technical standards for performance testing to validate the guarantees of the project (Power Output, Heat Rate, Efficiency, etc.). Thus providing the parties to a power project with the tools they need to ensure that the planned project performance was met and the proper transfer of funds are accomplished. To enable solar energy systems to be fully embraced by the power industry, they must have similar codes and standards to mitigate commercial risks associated with contractual acceptance testing. The ASME PTC 52 will provide these standard testing methods to validate Concentrating Solar Power (CSP) systems performance guarantees with confidence. This paper will present the affect that solar resource variability and measurement accuracies have on concentrating solar field performance uncertainty based on calculation methods like those used for conventional fossil power plants. Measurement practices and methods will be discussed to mitigate that uncertainty. These uncertainty values will be correlated to the levelized cost of electricity (LCOE), and LCOE sensitivities will be derived. The results quantify the impact of resource variability during testing, test duration and sampling rate to annual performance calculation. These uncertainties will be further associated with costs and risks based on typical technology performance guarantees. The paper will also discuss how the development of standard measurements and calculation methods help to produce lower uncertainty associated with the overall plant result, which is already being accomplished by ASME PTCs in conventional power genreation.
Proceedings Papers
Proc. ASME. ES2011, ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C, 503-510, August 7–10, 2011
Paper No: ES2011-54166
Abstract
Concentrating solar energy systems can use either refractive or reflective approaches to achieve the desired concentration ratio. However this is done, there is always a question about what the flux might actually be incident on the target of interest after the concentration process. Assessing the losses due to the concentration process is quite important in understanding the overall performance of the solar concentrating system. An issue that impacts this measurement is the type of system being evaluated, as the total flux at the focal point could be quite large. We have been working with concentrating PV units that utilize acrylic Fresnel lenses to achieve the necessary concentration on a single multi-junction cell. The magnitude of the losses associated with these types of lenses was desired. We developed two calorimeters for the purpose of evaluating the optical efficiency of Fresnel lenses utilized in various point focus concentrating systems. The first calorimeter developed utilizes a transient technique whereby a time-measured pulse of the beam is directed to a mass of material in a cavity form. The material has a high conductivity, so the lumped mass approximation can be used for the analysis of the energy absorbed if the temperature rise of the material is measured. The other calorimeter developed was a steady-state type that employs a technique commonly known as flow calorimetry. In this approach, the concentrated flux is beamed into the core of the calorimeter which is cooled to some steady-state value of temperature with a liquid (water near the ambient temperature was used in our tests). Knowing the liquid flow rate and temperature rise of the fluid allows the total heat input to be assessed. This paper discusses the development, testing, and comparison of the two calorimeters. Results are given for the evaluation of several types of commercial acrylic Fresnel lenses having different characteristics such as groove density and focal length.
Proceedings Papers
Proc. ASME. ES2010, ASME 2010 4th International Conference on Energy Sustainability, Volume 2, 431-433, May 17–22, 2010
Paper No: ES2010-90074
Abstract
While solar photovoltaic (PV) panels have been used successfully to produce electricity for quite some time, it has been technically difficult to capture their heat because of the large area of a flat-plate photovoltaic panel. Likewise it has been difficult to manufacture solar concentrator systems that are of the same physical scale, about one square meter, as successful commercial flat-plate photovoltaic panels and incorporate them into a commercializable and easily manufactured solar energy system. This paper addresses the two problems by considering the feasibility of a single design of a one square meter plastic nonimaging solar concentrator that focuses sunlight on a heat-capturing, dense array of high-intensity photovoltaic chips. The individual one square meter modules are designed to be mounted on a 2-axis tracking system which could have a double polar-axis support for energy and cost efficiency. When coupled with an existing electronic control, these three components create a commercial-scale solar electricity device that also provides heat in quantities suitable for heating or cooling. Preliminary contacts with electric utilities and commercial/industrial businesses have found interest in procurement of the proposed technology for widespread harvesting and use of solar energy in the US and abroad.
Proceedings Papers
Proc. ASME. ES2009, ASME 2009 3rd International Conference on Energy Sustainability, Volume 2, 615-624, July 19–23, 2009
Paper No: ES2009-90140
Abstract
Multi-component molten salts have been formulated recently that may enhance thermal energy storage for parabolic trough solar power plants. This paper presents further developments regarding molten salt mixtures consisting of common alkali nitrates and either alkaline earth nitrates or alkali nitrite salts that have advantageous properties for applications as heat transfer fluids in parabolic trough systems. We report results for formulations of inorganic molten salt mixtures that display freeze-onset temperatures below 100°C. In addition to phasechange behavior, several properties of these molten salts that significantly affect their suitability as thermal energy storage fluids were evaluated, including chemical stability and viscosity. The nitrate-based molten salts have demonstrated chemical stability in the presence of air up to 500°C. The capability to operate at temperatures up to 500°C may allow an increase in maximum temperature operating capability vs. organic fluids in existing trough systems and will enable increased power cycle efficiency. Experimental measurements of viscosity were performed from near the freeze-onset temperature to about 200°C. Viscosities can exceed 100 cP near the freezing temperature but are 4 to 5 cP in the anticipated operating temperature range. Experimental measurements of density, thermal conductivity and heat capacity are in progress and will be reported at the meeting. Corrosion tests were conducted for several thousand hours at 500°C with stainless steels and at 350°C for carbon and chromium-molybdenum steels. Examination of the specimens demonstrated good compatibility of these materials with the molten nitrate salt mixtures. Laboratory studies were conducted to identify mixtures of nitrate and nitrite (NO 2 − ) salts as additional candidates for a low-melting heat transfer fluid. Mixtures in which the cations were potassium, sodium and lithium, in various proportions, demonstrated freezing points as low as 70°C for a particular nitrate/nitrite anion composition. Development has emphasized mixtures that minimize lithium content in order to reduce the cost as the lithium salt is the most expensive constituent. Work is in progress to explore the phase diagram of the 1:1 mol ratio of nitrate/nitrite and to evaluate physical properties such as viscosity, density and thermal conductivity. Results to date indicate that the viscosity of these mixtures is considerably less than nitrate-only melts, which necessarily contain calcium cations to suppress freezing to similarly low temperatures.
Proceedings Papers
Proc. ASME. ES2009, ASME 2009 3rd International Conference on Energy Sustainability, Volume 2, 605-614, July 19–23, 2009
Paper No: ES2009-90132
Abstract
The operation of solar energy systems is necessarily transient. Over the lifetime of a concentrating solar power plant, the system operates at design conditions only occasionally, with the bulk of operation occurring under part-load conditions depending on solar resource availability. Credible economic analyses of solar-electric systems requires versatile models capable of predicting system performance at both design and off-design conditions. This paper introduces new and adapted simulation tools for power tower systems including models for the heliostat field, central receiver, and the power cycle. The design process for solar power tower systems differs from that for other concentrating solar power (CSP) technologies such as the parabolic trough or parabolic dish systems that are nearly modular in their design. The design of an optimum power tower system requires a determination of the heliostat field layout and receiver geometry that results in the greatest long-term energy collection per unit cost. Research presented in this paper makes use of the DELSOL3 code (Kistler, 1986) which provides this capability. An interface program called PTGEN was developed to simplify the combined use of DELSOL3 and TRNSYS. The final product integrates the optimization tool with the detailed component models to provide a comprehensive modeling tool set for the power tower technology.
Proceedings Papers
Proc. ASME. ES2008, ASME 2008 2nd International Conference on Energy Sustainability, Volume 1, 117-126, August 10–14, 2008
Paper No: ES2008-54247
Abstract
For the majority of commercial and industrial facilities in the United States, electrical power represents a significant portion of their total operating costs and a cost over which they have little or no control. The cost of electrical power has risen dramatically during the past three years, and is projected to continue to increase due to uncertainties in global fuel supply, production investments necessary to meet increasing demand, increased maintenance and repair costs of aging production and transmission infrastructure, the decommissioning and remediation of life-expired generating facilities, and the implementation of increasingly stringent pollution control measures. These trends and influences are seen, to a greater or lesser extent, across the entire nation, but their impact upon the northeast and mid-Atlantic states of Connecticut, Maryland, New Jersey and Delaware has been particularly significant. While solar photovoltaic systems can provide an excellent on-site power source for many commercial and industrial facilities, and would reduce the burden on the existing, over-stretched and aging national power transmission infrastructure, the high capital cost of solar photovoltaic systems represents a significant barrier to the wide-scale commercial adoption of this technology. In an attempt to overcome this barrier, individual states are implementing a variety of rebate and incentive programs designed to promote the installation and use of solar power systems. However a unifying Federal Renewable Portfolio Standard does not presently exist and the complex administration demand of state programs represents a further barrier to adoption for many companies. Further, while a Federal Investment Tax Credit is available, certain organizations for whom solar photovoltaic power would otherwise be an attractive cost-saving opportunity, notably municipalities and non-profits, are generally unable to take advantage of this benefit. In response to this unsatisfactory situation, Soltage, Inc. designs, installs, operates, maintains, and retains ownership of commercial-scale solar photovoltaic power stations at client sites, providing solar-generated power directly to the client. Our customers incur no capital, maintenance or operating costs, and have no administrative burden beyond purchasing solar-generated power at rates that are below their existing utility rate and which are stabilized and guaranteed into the future. For our clients, this is their most effective means of controlling and stabilizing energy expenses in the immediate and long terms. For our nation, this is the key to rapidly implementing the adoption and scale-up of solar photovoltaic power, with all of its inherent benefits.
Proceedings Papers
Proc. ASME. ES2008, ASME 2008 2nd International Conference on Energy Sustainability, Volume 1, 707-720, August 10–14, 2008
Paper No: ES2008-54071
Abstract
A general approach, the HLRP technique, for determining the performance of a hybrid turbine-fuel cell cogeneration system with a renewable energy sources is presented for a domestic residence. The hybrid-cogeneration system provides the electric power as well as satisfying heating loads. In this paper a system level analysis that includes practical values of heat exchangers, pumps, and storage equipment is presented. The use of the ratio of the thermal load to required power parameter (HLRP), which has been used by the authors to scale energy systems, allows the performance to be quickly determined and preliminary carbon dioxide production rates and cost effects to be estimated. The present paper includes solar energy systems as renewable energy to illustrate the development of this technique and its integration with the hybrid fuel cell cogeneration system. Practical values of solar collector efficiency and storage tank and battery storage efficiency are included. The analysis focused on matching the transient characteristics of the power and thermal loads with those of the renewable energy system. The results demonstrate that for a typical winter day in the location studied there are not large variations in the energy utilization factors for the four different systems investigated. There is a 23% reduction in the carbon dioxide produced using the solar thermal or combined system as compared to the no renewable energy or photovoltaic systems. The information provided by the performance graphs is used to estimate costs for each system and to easily determine which system is the most efficient for satisfying energy requirements and reducing green house gas emissions. The results provide site planners and physical plant operators with initial information that can be used to design new facilities or effectively integrate large plant expansion that include renewable energy systems in a manner that will minimize energy requirements and reduce pollution effects.
Proceedings Papers
Proc. ASME. ES2008, ASME 2008 2nd International Conference on Energy Sustainability, Volume 2, 631-637, August 10–14, 2008
Paper No: ES2008-54174
Abstract
Thermal energy storage can enhance the utility of parabolic trough solar power plants by providing the ability to match electrical output to peak demand periods. An important component of thermal energy storage system optimization is selecting the working fluid used as the storage media and/or heat transfer fluid. Large quantities of the working fluid are required for power plants at the scale of 100-MW, so maximizing heat transfer fluid performance while minimizing material cost is important. This paper reports recent developments of multi-component molten salt formulations consisting of common alkali nitrate and alkaline earth nitrate salts that have advantageous properties for applications as heat transfer fluids in parabolic trough systems. A primary disadvantage of molten salt heat transfer fluids is relatively high freeze-onset temperature compared to organic heat transfer oil. Experimental results are reported for formulations of inorganic molten salt mixtures that display freeze-onset temperatures below 100°C. In addition to phase-change behavior, several properties of these molten salts that significantly affect their suitability as thermal energy storage fluids were evaluated, including chemical stability and viscosity. These alternative molten salts have demonstrated chemical stability in the presence of air up to approximately 500°C in laboratory testing and display chemical equilibrium behavior similar to Solar Salt. The capability to operate at temperatures up to 500°C may allow an increase in maximum temperature operating capability vs. organic fluids in existing trough systems and will enable increased power cycle efficiency. Experimental measurements of viscosity were performed from near the freeze-onset temperature to about 200°C. Viscosities can exceed 100 cP at the lowest temperature but are less than 10 cP in the primary temperature range at which the mixtures would be used in a thermal energy storage system. Quantitative cost figures of constituent salts and blends are not currently available, although, these molten salt mixtures are expected to be inexpensive compared to synthetic organic heat transfer fluids. Experiments are in progress to confirm that the corrosion behavior of readily available alloys is satisfactory for long-term use.
Proceedings Papers
Proc. ASME. ES2008, ASME 2008 2nd International Conference on Energy Sustainability, Volume 2, 329-334, August 10–14, 2008
Paper No: ES2008-54090
Abstract
A prototype direct absorption central receiver, called the solid particle receiver (SPR), was recently built and tested on-sun at Sandia National Laboratories. The SPR consists of a 6 m tall cavity through which a 1 m wide curtain of spherical ceramic particles is dropped and directly heated with concentrated solar energy. The focus of this current effort is to provide an experimental basis for the validation of computational models that have been created to support the development of the solid particle receiver as a solar interface for thermochemical hydrogen and solar power systems. In this paper we present detailed information on the design and construction of the receiver as well as test data including the temperature change of the particles and internal cavity walls. We conclude with a discussion of the steps needed to demonstrate the overall feasibility of the SPR concept.