Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-20 of 59
Heat losses
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ES2019, ASME 2019 13th International Conference on Energy Sustainability, V001T03A001, July 14–17, 2019
Paper No: ES2019-3826
Abstract
Camera-based imaging methods were evaluated to quantify both particle and convective heat losses from the aperture of a high-temperature particle receiver. A bench-scale model of a field-tested on-sun particle receiver was built, and particle velocities and temperatures were recorded using the small-scale model. Particles heated to over 700 °C in a furnace were released from a slot aperture and allowed to fall through a region that was imaged by the cameras. Particle-image, particle-tracking, and image-correlation velocimetry methods were compared against one another to determine the best method to obtain particle velocities. A high-speed infrared camera was used to evaluate particle temperatures, and a model was developed to determine particle and convective heat losses. In addition, particle sampling instruments were deployed during on-sun field tests of the particle receiver to determine if small particles were being generated that can pose an inhalation hazard. Results showed that while there were some recordable emissions during the tests, the measured particle concentrations were much lower than the acceptable health standard of 15 mg/m 3 . Additional bench-scale tests were performed to quantify the formation of particles during continuous shaking and dropping of the particles. Continuous formation of small particles in two size ranges (< ∼1 microns and between ∼8–10 microns) were observed due to de-agglomeration and mechanical fracturing, respectively, during particle collisions.
Proceedings Papers
Proc. ASME. ES2019, ASME 2019 13th International Conference on Energy Sustainability, V001T03A008, July 14–17, 2019
Paper No: ES2019-3903
Abstract
Solid particle receivers provide an opportunity to run concentrating solar tower receivers at higher temperatures and increased overall system efficiencies. The design of the bins used for storing and managing the flow of particles creates engineering challenges in minimizing thermomechanical stress and heat loss. An optimization study of mechanical stress and heat loss was performed at the National Solar Thermal Test Facility at Sandia National Laboratories to determine the geometry of the hot particle storage hopper for a 1 MWt pilot plant facility. Modeling of heat loss was performed on hopper designs with a range of geometric parameters with the goal of providing uniform mass flow of bulk solids with no clogging, minimizing heat loss, and reducing thermomechanical stresses. The heat loss calculation included an analysis of the particle temperatures using a thermal resistance network that included the insulation and hopper. A plot of the total heat loss as a function of geometry and required thicknesses to accommodate thermomechanical stresses revealed suitable designs. In addition to the geometries related to flow type and mechanical stress, this study characterized flow related properties of CARBO HSP 40/70 and Accucast ID50-K in contact with refractory insulation. This insulation internally lines the hopper to prevent heat loss and allow for low cost structural materials to be used for bin construction. The wall friction angle, effective angle of friction, and cohesive strength of the bulk solid were variables that were determined from empirical analysis of the particles at temperatures up to 600°C.
Proceedings Papers
Proc. ASME. ES2018, ASME 2018 12th International Conference on Energy Sustainability, V001T11A007, June 24–28, 2018
Paper No: ES2018-7504
Abstract
This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solar-driven supercritical CO 2 (sCO2) Brayton power cycle. The design requirements for high pressure (≥ 20 MPa) and high temperature (≥ 700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytical hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kW t shell-and-plate design was ultimately selected for construction and integration with Sandia’s falling particle receiver system.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T11A007, June 26–30, 2016
Paper No: ES2016-59255
Abstract
This study evaluated the building cooling capacity of sky radiation, which was previously identified to have the greatest cooling potential among common ambient sources for climates across the US. [Robinson, et al. 2013b]. A heat pipe augmented sky radiator system was simulated by a thermal network with nine nodes, representing a thin polyethylene cover, white (ZnO) painted radiator plate [Duffie & Beckman 2013], condenser and evaporator ends of the heat pipe, thermal storage fluid (water), tank wall, room, sky and ambient air. Heat transfer between nodes included solar flux and sky radiation to cover and plate, wind convection and radiation from cover to ambient, radiation from plate to ambient, natural convection and radiation from plate to cover, conduction from plate to condenser or, two-phase heat transfer from evaporator to condenser, natural convection from evaporator to water and from water to tank wall, natural convection and radiation from tank wall to room, and overall heat loss from room to ambient. Nodal temperatures were simultaneously solved as functions of time using Typical Meteorological Year (TMY3) weather data. Auxiliary cooling was applied as needed to limit room temperature to a maximum of 23.9°C. For this initial investigation, a moderate climate (Louisville, KY) was used to evaluate the effects of radiator orientation, thermal storage capacity and cooling load to radiator area ratio, LRR. Louisville and two challenging climates (Miami, FL and New Orleans, LA) were then used to evaluate five cover configurations — zero, one and two covers with unconstrained temperature, and zero and one cover with temperature limited to the dew point of ambient air to simulate condensation on the cover. Results were compared to a Louisville baseline with LRR = 10 W/m 2 K, horizontal radiator and one cover with constrained temperature, which provided an annual sky fraction (fraction of cooling load provided by sky radiation) of 0.861. A decrease to 0.857 was found for an increase in radiator slope to 20°, and a drop to 0.833 for 53° slope (latitude + 15°, a typical slope for solar heating). These drops were associated with increases in average radiator temperature by 0.2°C for 20° and 1.5°C for 53°. A 25% decrease in storage capacity caused a decrease in sky fraction to 0.854. Sky fractions were 0.727 and 0.963 for LRR of 20 and 5, respectively. Sky fractions for the baseline system in Miami and New Orleans were 0.505 and 0.603, respectively. In all three climates, performance was little affected by constraining the cover temperature and by adding a second cover. These results confirm the potential for passive cooling of buildings by radiation to the sky. Climate, LRR and thermal storage capacity had strong effects on performance, while the cover configuration did not. Radiator slope had a surprisingly small impact, considering that the view factor to the sky at 53° tilt is less than 0.5.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T04A023, June 26–30, 2016
Paper No: ES2016-59655
Abstract
Particle Heating Receivers (PHR) offer a range of advantages for concentrator solar power (CSP). PHRs can facilitate higher operating temperatures (>700°C), they can allow for inexpensive direct storage, and they can be integrated into cavity receiver designs for high collection efficiency. In operation, PHRs use solid particles that are irradiated and heated directly as they fall through a region exposed to concentrated sunlight. The heated particles can subsequently be stored in insulated bins, with the stored thermal energy reclaimed via heat exchanger to secondary working fluid for the power cycle in CSP. In this field Georgia Tech has over five years’ experience developing PHR technology through the support of the DOE SunShot program and similar research efforts. Georgia Tech has dealt with the crucial challenges in particle receiver technology: particulate flow behavior, particulate handling, and particulate heat transfer. In particular, Georgia Tech has specialized in innovative advances in the utilization and design of discrete structures in PHRs (DS-PHR) to prolong particulate residence time in the irradiated zone. This paper describes the development and results of lab-scale testing for DS-PHRs especially in the Georgia Tech high flux solar simulator (GTHFSS). The GTHFSS is a bank of high intensity xenon lamps with elliptical reflectors designed to replicate a concentrated solar source. Two series of tests have been undertaken: batch and continuous operation. Initially the DS-PHR has been tested in a batch apparatus in which a substantial but still limited quantity of preheated particulate flows through from an elevated bin through the irradiated PHR into a weighing box collecting bin. The use of a weighing box is advantageous since the flow rate of particulate is otherwise especially hard to measure. Temperature rise measurements and mass flow rate measurements allow calculation of energy collection rates. Calorimetry measurements, also described in the paper, are used to verify the incident concentrated radiation allowing the calculation of the collection efficiency. This preliminary series of experiments have been completed using the batch apparatus, with the efficiencies of the lab-scale DS-PHR being determined for a range of temperatures. Efficiencies above 90% have been measured at low temperatures roughly corresponding to the so-called optical efficiency, which is the rate of energy collection at low temperature and minimal heat loss. Batch experiment data indicates a collection efficiency of approximately 81–85% at an average particle operating temperature of 500°C. Lab-scale batch results at 700°C in proved to be unstable, and as such a rework employing a continuous recirculation loop is underway. While the batch apparatus is convenient for preliminary work, it is challenging to reach steady state operation in the mixing and measurement section below the DS-PHR, which limits this apparatus in higher temperature experiments. Consequently, the experiment is being reconfigured for continuous flow, in which the particulate will be heated and recirculated by a high temperature air conveyor. The advantage of the high temperature conveyor has already been proved by its successful integration as a heater and mixer in the hot bin of the batch apparatus. Such a compact device was also quite advantageous in the limited confines of a typical laboratory simulator such as the GTHFSS. While continuous flow prevents the exceedingly desirable use of an uninterrupted mass measurement device, highly accurate mass flow data is still expected based on the use of a perforated plate flow control station. This device relies on the Berverloo effect to maintain a constant flow of particulate through an array of orifices, for which the flow is largely independent of upstream conditions. A weighing box will be used to calibrate and verify the mass flow. This paper will report on efficiency measurements with the batch flow experiments and present the preliminary steps taken to conduct the recirculation experiment. The bulk the research reported in the paper is sponsored by and done in support of the DoE Sun Shot initiative.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T09A003, June 26–30, 2016
Paper No: ES2016-59577
Abstract
On the way to a de-carbonized economy by 2050 new technologies have to be developed and deployed into the market. In solar driven thermochemical processes concentrated solar radiation is used as a renewable high temperature heat source to drive a chemical reaction. These processes are promising pathways for the production of gaseous and liquid fuels and therefore they can provide sustainable chemical energy carriers with inherent long-term storage capabilities. Amongst these processes, redox cycles for the production of syngas from water and carbon dioxide received considerable interest due to their high theoretical process efficiencies. In these processes a redox material is reduced using high temperature heat which is provided by concentrated solar radiation. In a second reaction, at considerably lower temperatures, the redox material is oxidized while splitting water or carbon dioxide. One requirement for the design of efficient redox processes is a high recovery rate of the sensible heat of the solid redox material. In recent redox process concepts the use of inert heat transfer particles in combination with a particulate redox material has been proposed. Amongst other benefits this methodology allows to recover heat from the redox material. A corresponding solid-solid heat recovery system is under development. In a single stage the heat recovery unit acts as a co-current heat exchanger. By combining several units and by using a proper flow path a quasi-counter-current heat exchanger can be obtained. Such a heat recovery system requires that particles are lifted at temperatures well above 1100°C. These high temperatures require a simple design, decent thermal insulation and the thermal shielding of all moving parts and engine. The present work is dealing with the development of a respective conveying system which can be operated at the targeted temperatures, while heat losses are prevented as far as possible. A lab scale version of the conveyer is constructed and tested. A numerical model of the conveyer is developed and validated using results of an experimental campaign with particles at 1150°C. The next step in the assessment of the conveyer system is the analysis of the performance of a scale up version. A generic process analysis will be conducted to obtain operational and design requirements of the scale up conveyer. A detailed scale up version is developed accordingly and the validated numerical model is applied to this design to predict the heat losses during the particle lifting and to discuss their impact on the total process performance.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T04A005, June 26–30, 2016
Paper No: ES2016-59158
Abstract
Multiple receiver designs have been evaluated for improved optics and efficiency gains including flat panel, vertical-finned flat panel, horizontal-finned flat panel, and radially finned. Ray tracing using SolTrace was performed to understand the light-trapping effects of the finned receivers. Re-reflections of the fins to other fins on the receiver were captured to give an overall effective solar absorptance. The ray tracing, finite element analysis, and previous computational fluid dynamics showed that the horizontal-finned flat panel produced the most efficient receiver with increased light-trapping and lower overall heat loss. The effective solar absorptance was shown to increase from an intrinsic absorptance of 0.86 to 0.96 with ray trace models. The predicted thermal efficiency was shown in CFD models to be over 95%. The horizontal panels produce a re-circulating hot zone between the panel fins reducing convective loss resulting in a more efficient receiver. The analysis and design of these panels are described with additional engineering details on testing a flat panel receiver and the horizontal-finned receiver at the National Solar Thermal Test Facility. Design considerations include the structure for receiver testing, tube sizing, surrounding heat shielding, and machinery for cooling the receiver tubes.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T04A016, June 26–30, 2016
Paper No: ES2016-59544
Abstract
This paper evaluates novel particle release patterns for high-temperature falling particle receivers. Spatial release patterns resembling triangular and square waves are investigated and compared to the conventional straight-line particle release. A design of experiments was developed, and a simulation matrix was developed that investigated three two-level factors: amplitude, wavelength, and wave type. Results show that the wave-like patterns increased both the particle temperature rise and thermal efficiency of the receiver relative to the straight-line particle release. Larger amplitudes and smaller wavelengths increased the performance by creating a volumetric heating effect that increased light absorption and reduced heat loss. Experiments are also being designed to investigate the hydraulic and thermal performance of these new particle release configurations.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T02A009, June 26–30, 2016
Paper No: ES2016-59628
Abstract
A photobioreactor (PBR) was operated for sixteen days producing S. Leopoliensis. The PBR was lit by two LED panels, one on each of the long sides of the PBR. The PBR dimensions were nominally 51mm by 273mm with a height of 319mm (273mm liquid depth). Each LED panel was powered at 14.1W (11.2V and 1.26A). Measurements of ambient temperature, ambient relative humidity, water loss from the PBR, relative humidity of the exhaust gas from the PBR, air flow rate through the PBR, air pressure in the plenum, growth medium temperature, and LED panel temperature were made approximately daily. Measurements show that the growth medium (water) temperature was relatively insensitive to the ambient temperature which varied from 22.7C to 33.6C. The medium temperature ranged from 23.9C (beginning of the test) to 40.6C. The medium temperature mirrored the LED panel temperature staying 2–4C below the LED panel temperature after the first day. The elevated LED panel temperature was likely due to the inefficiency of the LED lights and the fact that much of the light passing through the reactor volume was incident on the LED panel on the opposite side of the reactor. The panels are black in color and absorbed a significant portion of the light passing through the reactor volume. The air flow rate through the PBR ranged from 1.33×10 −5 m 3 /s to 1.67×10 −5 m 3 /s. The parallel between panel temperature and PBR medium temperature indicate that the amount of air moving through the PBR was insufficient to affect the medium temperature significantly. The heat loss from the PBR to the ambient environment was also small likely due to the small area available to heat loss to the environment when the PBR walls with the LED panels are excluded. The LED panels covered nominally 88% of the PBR reactor volume area. The measured data and measurements of light intensity passing through the two short walls of the panel will be used to estimate heat loss parameters of the PBR. The exhaust air from the PBR varied from 42.6% to 99.1% with the higher measurements occurring days 6–11. Estimates of the energy stored in the algal biomass are also evaluated in the analysis.
Proceedings Papers
Proc. ASME. ES2016, Volume 2: ASME 2016 Energy Storage Forum, V002T01A013, June 26–30, 2016
Paper No: ES2016-59631
Abstract
Reciprocating-piston compressors and expanders are promising solutions to achieve higher overall efficiencies in various energy storage solutions. This article presents an experimental study of the exergetic losses in a gas spring. Considering a valveless piston-cylinder system allows us to focus on the thermodynamic losses due to thermal-energy exchange processes in reciprocating components. To differentiate this latter loss mechanism from mass leakages or frictional dissipation, three bulk parameters are measured. Pressure and volume are respectively measured with a pressure transducer and a rotary sensor. The gas temperature is estimated by measuring the Time-Of-Flight (TOF) of an ultrasonic pulse signal across the gas chamber. This technique has the advantage of being fast and non-invasive. The measurement of three bulk parameters allows us to calculate the work as well as the heat losses throughout a cycle. The thermodynamic loss is also measured for different rotational speeds. The results are in good agreement with previous experimental studies and can be employed to validate CFD or analytical studies currently under development.
Proceedings Papers
Proc. ASME. ES2015, Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials, V001T05A014, June 28–July 2, 2015
Paper No: ES2015-49431
Abstract
Typical Concentrated Solar Power (CSP) central receiver power plants require the use of either an external or cavity receiver. Previous and current external receivers consist of a series of tubes connected to manifolds that form a cylindrical or rectangular shape such as in the cases of Solar One, Solar Two, and most recently the Ivanpah solar plant. These receivers operate at high surface temperatures (>600°C) at which point thermal re-radiation is significant. However, the geometric arrangement of these heat transfer tubes results in heat losses directly to the environment. This work focused on how to fundamentally reduce this heat loss through the manipulation of heat transfer tube configurations. Four receiver configurations are studied: flat receiver (base case study), a radial receiver with finned structures (fins arranged in a circular pattern on a cylinder), a louvered finned structure (horizontal and angled fins on a flat plate), and a vertical finned structure (fins oriented vertically along a flat plate). The thermal efficiency, convective heat loss patterns, and air flow around each receiver design is found using the computational fluid dynamics (CFD) code ANSYS FLUENT. Results presented in this paper show that alternative tubular configurations increase thermal efficiency by increasing the effective solar absorptance of these high-temperature receivers by increasing the light trapping effects of the receiver, reducing thermal emittance to the environment, and reducing the overall size of the receiver. Each receiver configuration has finned structures that take advantage of the directional dependence of the heliostat field resulting in a light trapping effect on the receiver. The finned configurations tend to lead to “hot” regions on the receiver, but the new configurations can take advantage of high local view factors (each surface can “see” another receiver surface) in these regions through the use of heat transfer fluid (HTF) flow patterns. The HTF reduces the temperatures in these regions increasing the efficiency of heat transfer to the fluid. Finally, the new receiver configurations have a lower overall optical intercept region resulting in a higher geometric concentration ratio for the receiver. Compared to the base case analysis (flat plate receiver), the novel tubular geometries results showed an increase in thermal efficiency.
Proceedings Papers
Proc. ASME. ES2015, Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials, V001T06A002, June 28–July 2, 2015
Paper No: ES2015-49155
Abstract
This paper presents the economic optimization of indirect sewage sludge heat dryer for sewage sludge incineration plants. The objective function based on two-phase heat transfer, and economic relations is provided to demonstrate the optimum size for the minimum investment cost. De-watered sludge is fed into the dryer with a mass flow rate of 165 tons per day and consists of 27% dry matter. After the sludge drying process, the dryness of sludge increases up to 40%. In the indirect sludge dryer unit, thermal oil is used to heat the dryer wall and to prevent heat loss. Thermal oil is circulated in a closed cycle and gathered into an oil tank. Total cost of the sludge dryer unit changes proportional to the dryer area. The optimum dryer area is found as 32.54 m 2 . The corresponding minimum cost is found as $35,700.
Proceedings Papers
Proc. ASME. ES2015, Volume 1: Advances in Solar Buildings and Conservation; Climate Control and the Environment; Alternate Fuels and Infrastructure; ARPA-E; Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power; Economic, Environmental, and Policy Aspects of Alternate Energy; Geothermal Energy, Harvesting, Ocean Energy and Other Emerging Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Micro and Nano Technology Applications and Materials, V001T05A023, June 28–July 2, 2015
Paper No: ES2015-49710
Abstract
Convective air flows are a significant source of thermal loss from tubular cavity receivers in concentrating solar-thermal power (CSP) applications. Reduction in these losses is traditionally achieved by tailoring the cavity geometry, but the potential of this method is limited by the aperture size. The use of active airflow control, in the form of an air curtain, is an established practice to prevent infiltration of cold air through building doorways. Its application in reducing solar receiver convective heat loss is new. In this study, computational fluid dynamics (CFD) simulations are presented for the zero wind case, demonstrating that an optimised air curtain can readily reduce convective losses by more than 45%. A parametric investigation of jet direction and speed indicates that two distinct optimal air curtain flow structures exist. In the first, the jet reduces the size of the convective zone within the cavity by partially sealing the aperture. The optimum velocity range for this case occurs with a low strength jet. At higher jet speeds, the losses are generally set by the flow induced in the cavity and entrainment into the jet. However, a second optimal configuration is discovered for a narrow range of jet parameters, where the entrainment is reduced due to a shift in the stack neutral pressure level, allowing the jet to fully seal the cavity. A physical model is developed, based on the fluid physics of a jet and the ‘deflection modulus’ concept typically used to characterise air curtains in building heating and ventilation applications. The model has been applied to the solar thermal cavity case, and shows good agreement with the computational results.
Proceedings Papers
Proc. ASME. ES2015, Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies, V002T13A005, June 28–July 2, 2015
Paper No: ES2015-49170
Abstract
A simplified mathematical model was developed to analyze a storage tank containing a stationary fluid with hot and cold heat exchanger coils. The model is to be used as a screening tool for determining tank size and configurations for operation with a given power generation unit in a combined cooling, heating and power (CCHP) system. As such, the model was formulated so that it requires minimal information about the thermo-physical properties of the fluids and design parameters in order to determine the temperature profiles of the stored fluid and the heat transfer fluid for turbulent flow inside the heat exchangers. The presented model is implemented computationally with varying number of nodes, before comparing it with a more detailed model that take into account the variation of thermo-physical properties, as well as the effects of thermal de-stratification and heat loss to the ambient. The simplified model provided accurate temperature predictions that could subsequently be used to design a stratified tank system for a given CCHP application.
Proceedings Papers
Proc. ASME. ES2015, Volume 2: Photovoltaics; Renewable-Non-Renewable Hybrid Power System; Smart Grid, Micro-Grid Concepts; Energy Storage; Solar Chemistry; Solar Heating and Cooling; Sustainable Cities and Communities, Transportation; Symposium on Integrated/Sustainable Building Equipment and Systems; Thermofluid Analysis of Energy Systems Including Exergy and Thermoeconomics; Wind Energy Systems and Technologies, V002T18A009, June 28–July 2, 2015
Paper No: ES2015-49702
Abstract
Open expansion tanks are applied vastly in central heating and air-conditioning systems. Central heating systems are subjected to great deals of energy losses, owing to the lack of proper design. In this paper, the structure of Open Expansion Tanks is revised and some modifications for reducing energy and heat loss are made to their elements. Moreover, some common designs available in the market are studied in order to better recognize their defects and capabilities. To reach an efficient design, several scenarios are tested using Computational methods (CFD based). In order to validate the new design, an experimental model was created and heat and energy survey operations were performed. The results of energy auditing were analyzed to show the convergence of numerical and experimental models. Additionally, the proposed model was economically evaluated. The final presented model named “Optimized OET with twin containers” is capable of reducing the energy loss by 85 to 95 percent.
Proceedings Papers
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A049, June 30–July 2, 2014
Paper No: ES2014-6632
Abstract
The use of an air curtain blowing across the aperture of a falling-particle receiver has been proposed to mitigate convective heat losses and to protect the flow of particles from external winds. This paper presents experimental and numerical studies that evaluate the impact of an air curtain on the performance of a falling particle receiver. Unheated experimental studies were performed to evaluate the impact of various factors (particle size, particle mass flow rate, particle release location, air-curtain flow rate, and external wind) on particle flow, stability, and loss through the aperture. Numerical simulations were performed to evaluate the impact of an air curtain on the thermal efficiency of a falling particle receiver at different operating temperatures. Results showed that the air curtain reduced particle loss when particles were released near the aperture in the presence of external wind, but the presence of the air curtain did not generally improve the flow characteristics and loss of the particles for other scenarios. Numerical results showed that the presence of an air curtain could reduce the convective heat losses, but only at higher temperatures (>600°C) when buoyant hot air leaving the aperture was significant.
Proceedings Papers
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A028, June 30–July 2, 2014
Paper No: ES2014-6503
Abstract
The Riyadh Techno Valley Solar Tower, an innovative type of concentrator solar power plant, is being developed by King Saud University (KSU) and Georgia Tech (GT). The facility is being constructed at the Riyadh Techno Valley development near the KSU campus and will store thermal energy collected from the sun in solid particles, which can be heated to higher temperatures than is currently possible using molten salts. The particles must be well insulated to stop energy loss to the environment. Hence, GT and KSU have incorporated an insulated storage bin into the plant design. The bin will be constructed in several layers: an inner layer of firebrick, which can endure direct exposure to the heated particles; a specially prepared refractory insulating concrete, which maintains good insulating value at high temperatures; and a conventional structural concrete shell surrounding the entire bin. This paper presents a thermal analysis of this storage device and discusses structural analyses. Simplified analytical solutions are compared with the finite element results from a 3D ANSYS model of the entire bin. A temperature distribution is obtained, and heat loss through the bin is also evaluated. Modeling of rebar and concrete cracking are described, and methods of reducing stress on the outer concrete shell are considered. Structural support for an access tunnel into the bin is also explored. The current tunnel design involves a material with a relatively high thermal conductivity, necessitating modifications to the bin. Finally, material selection is considered, particularly with regard to the insulating concrete layer. Limitations on the use of Portland cement based insulating concretes are discussed, and alternative base materials are evaluated.
Proceedings Papers
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A037, June 30–July 2, 2014
Paper No: ES2014-6568
Abstract
The use of solid particles as a heat transfer and thermal energy storage (TES) medium in central receiver systems has received renewed attention in recent years due to the ability of achieving high temperatures and the potential reduction in receiver and TES costs. Performance of TES systems is primarily characterized by the percentage of heat loss they allow over a prescribed period of time. Accurate estimation of this parameter requires special attention to the transient nature of the process of charging the TES bin during solar field operation and discharging during nighttime or at periods where solar field operation is interrupted. In this study, a numerical model is built to simulate the charge-discharge cycle of a small cylindrical-shaped TES bin that is currently under construction. This bin is integrated into the tower of an experimental 300-kW (thermal) central receiver field being built in Riyadh, Saudi Arabia, for solid particle receiver research, most notably on-sun testing of the falling particle receiver concept within the context of a SunShot project. The model utilizes a type of wall construction that had been previously identified as showing favorable structural characteristics and being able to withstand high temperatures. The model takes into account the anticipated charge-discharge particle flow rates, and includes an insulating layer at the ceiling of the bin to minimize heat loss by convection and radiation to the receiver cavity located immediately over the TES bin. Results show that energy loss during the full charge-discharge cycle is 4.9% and 5.9% for a 5-hour and 17-hour discharge period, respectively. While large, these energy loss values are primarily due to the high surface-to-volume ratio of the small TES bin being investigated. Preliminary analysis shows that a utility-scale TES bin using the same concept will have an energy loss of less than 1%.
Proceedings Papers
Matthew Golob, Sheldon Jeter, Said I. Abdel-Khalik, Dennis Sadowski, Hany Al-Ansary, Abdelrahman Elleathy
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A054, June 30–July 2, 2014
Paper No: ES2014-6679
Abstract
The advantages of high temperature central receiver particle heating solar heat supply systems in concentrator solar power (CSP) have been recognized in recent years. The use of particulate as the collection medium provides two critical advantages: (1) Ordinary particulate minerals and products will allow higher collection temperatures approaching 1000°C compared with conventional molten salts, which are limited to around 650°C, and (2) the low cost high temperature particulate material can also be used as the storage medium in a highly cost effective thermal energy storage (TES) system. The high operating temperature allows use of high efficiency power conversion systems such as supercritical steam in a vapor power cycle or supercritical carbon dioxide in a Brayton cycle. Alternatively, a lower cost gas turbine can be used for the power conversion system. High conversion efficiency combined with inexpensive TES will yield a highly cost effective CSP system. The 300 kW-th prototype is being constructed as a solar heat supply system only, deferring the power conversion system for later demonstration in a larger integrated CSP system. This paper describes the general design and development efforts leading to construction of the 300 kW prototype system located in the Riyadh Techno Valley development near King Saud University in Riyadh, Saudi Arabia, which is the first sizeable solar heat supply system purposely designed, and constructed as a particle heating system. An important component in a particle heating system is the particle heating receiver (PHR), which should be durable and efficient while remaining cost-effective. A critical enabling technology of the PHR being implemented for this project was invented by researchers on our team. In our version of the PHR, the particulate flows downwards through a porous or mesh structure where the concentrated solar energy is absorbed. The porous structure will reduce the speed of the falling particulate material allowing a large temperature rise on a single pass. The new design will also increase the absorption of solar energy and mitigate convective heat loss and particle loss. Other innovative aspects of this design include low cost thermal energy storage bins and a cost effective particle to working fluid heat exchanger. Certain features of these design elements are subjects of ongoing patent applications. Nevertheless, the overall design and the development process of the prototype system is presented in this paper.
Proceedings Papers
Proc. ASME. ES2014, Volume 1: Combined Energy Cycles, CHP, CCHP, and Smart Grids; Concentrating Solar Power, Solar Thermochemistry and Thermal Energy Storage; Geothermal, Ocean, and Emerging Energy Technologies; Hydrogen Energy Technologies; Low/Zero Emission Power Plants and Carbon Sequestration; Photovoltaics; Wind Energy Systems and Technologies, V001T02A020, June 30–July 2, 2014
Paper No: ES2014-6446
Abstract
Cavity receivers have been an integral part of Concentrated Solar Power (CSP) plants for many years. However, falling solid particle receivers (SPR) which employ a cavity design are only in the beginning stages of on-sun testing and evaluation. A prototype SPR has been developed which will be fully integrated into a complete system to demonstrate the effectiveness of this technology in the CSP sector. The receiver is a rectangular cavity with an aperture on the north side, open bottom (for particle collection), and a slot in the top (particle curtain injection). The solid particles fall from the top of the cavity through the solar flux and are collected after leaving the receiver. There are inherent design challenges with this type of receiver including particle curtain opacity, high wall fluxes, high wall temperatures, and high heat losses. CFD calculations using ANSYS FLUENT were performed to evaluate the effectiveness of the current receiver design. The particle curtain mass flow rate needed to be carefully regulated such that the curtain opacity is high (to intercept as much solar radiation as possible), but also low enough to increase the average particle temperature by 200°C. Wall temperatures were shown to be less than 1200°C when the particle curtain mass flow rate is 2.7 kg/s/m which is critical for the receiver insulation. The size of the cavity was shown to decrease the incident flux on the cavity walls and also reduced the wall temperatures. A thermal efficiency of 92% was achieved, but was obtained with a higher particle mass flow rate resulting in a lower average particle temperature rise. A final prototype receiver design has been completed utilizing the computational evaluation and past CSP project experiences.