Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- ISBN-10
- ISSN
- EISSN
- Issue
- Volume
- References
- Conference Volume
- Paper No
NARROW
Date
Availability
1-12 of 12
Electrical efficiency
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Proceedings Papers
Proc. ASME. ES2018, ASME 2018 12th International Conference on Energy Sustainability, V001T12A004, June 24–28, 2018
Paper No: ES2018-7569
Abstract
In this study, an efficient cooling technique for concentrator photovoltaic (CPV) cells is proposed to enhance the system electrical efficiency and extend its lifetime. To do this, a comprehensive three-dimensional conjugate heat transfer model of CPV cells layers coupled with the heat transfer and fluid flow model inside jet impingement heat sink is developed. Four different jet impingement designs are compared. The investigated designs are (A) central inlet jet, (B) Hypotenuse inlet jet, (C) staggered inlet jet, and (D) conventional jet impingement design with side drainage. The effect of coolant flowrate on the CPV/T system performance is investigated. The model is numerically simulated and validated using the available experiments. The performance of CPV system is investigated at solar concentration ratios of 20 and coolant flowrate up to 6000g/min. It is found that increasing the flowrate from 60 g/min to 600 g/min decrease the maximum cell temperature by 31°C for the configuration D while increasing the flowrate from 600 g/min to 6000 g/min reduce the cell temperature by 20.2°C. It is also concluded that at a higher flowrate of 6000g/min, all the investigated configurations relatively achieve better temperature uniformity with maximum temperature differences of 0.9 °C, 2.1 °C, 3.6 °C, and 3.9 °C for configurations A, B, C, and D respectively.
Proceedings Papers
Proc. ASME. ES2016, Volume 1: Biofuels, Hydrogen, Syngas, and Alternate Fuels; CHP and Hybrid Power and Energy Systems; Concentrating Solar Power; Energy Storage; Environmental, Economic, and Policy Considerations of Advanced Energy Systems; Geothermal, Ocean, and Emerging Energy Technologies; Photovoltaics; Posters; Solar Chemistry; Sustainable Building Energy Systems; Sustainable Infrastructure and Transportation; Thermodynamic Analysis of Energy Systems; Wind Energy Systems and Technologies, V001T08A005, June 26–30, 2016
Paper No: ES2016-59411
Abstract
The photovoltaic output power is directly proportional to the solar radiation and inversely with the cell temperature. The higher the photovoltaic temperature is, the lower the electrical efficiency is with possible damage to the cell. To improve the electrical efficiency and to avoid the possible damage, a concentrating PV system associated with an effective cooling technique is of great importance. In the present study, a new cooling technique for concentrated photovoltaic (CPV) systems was introduced using various designs of micro-channel heat sinks. The suggested configurations included parallel flow, counter flow single and double layer micro-channels, and single layer flat micro-channel integrated with CPV system. A comprehensive three-dimensional thermo-fluid model for photovoltaic layers integrated with microchannel heat sink was developed. The model was simulated numerically to estimate the solar cell temperature. The numerical results were validated with the available experimental and numerical results. In the meantime, the effects of different operational parameters were investigated such as solar concentration ratio and cooling mass flow rate. Performance analysis of CPV using different microchannel configurations was implemented to determine the average and local solar cell temperature, pumping power, and temperature uniformity. Results indicated that the use of microchannel heat sink was a very effective cooling technique which highly attained temperature uniformity, viz., eliminated the hot spots formation with a significant reduction in the average temperature of CPV. The single layer parallel flow achieved the minimum solar cell temperature while the counter flow attained the most uniform temperature distribution compared with other configurations. Furthermore, the double layer parallel flow microchannel attained the minimum pumping power for a given cooling mass flow rate.
Proceedings Papers
Proc. ASME. ES2013, ASME 2013 7th International Conference on Energy Sustainability, V001T01A001, July 14–19, 2013
Paper No: ES2013-18011
Abstract
The technical performance of a non-tracking hybrid PV/T concept that uses a wavelength selective film is modeled. The wavelength selective film is coupled with a compound parabolic concentrator to reflect and concentrate the infrared portion of the solar spectrum onto a tubular absorber while transmitting the visible portion of the spectrum to an underlying thin-film photovoltaic module. The optical performance of the CPC/selective film is obtained through Monte Carlo Ray-Tracing. The CPC geometry is optimized for maximum total energy generation for a roof-top application. Applied to a rooftop in Phoenix, Arizona USA, the hybrid PV/T provides 20% more energy compared to a system of the same area with independent solar thermal and PV modules, but the increase is achieved at the expense of a decrease in the electrical efficiency from 8.8% to 5.8%.
Proceedings Papers
Proc. ASME. ES2012, ASME 2012 6th International Conference on Energy Sustainability, Parts A and B, 919-930, July 23–26, 2012
Paper No: ES2012-91258
Abstract
A Photovoltaic/PV cell converts solar radiation to electrical power. In order to have practical power output from these cells they are framed into modules. A typical module provides about 160–200 Wp. The electrical efficiency of the module decreases from its typical value of 19% by about 0.4–0.5% per degree K/°C. In order to increase the electrical efficiency of a PV system it is possible to cool the modules down by augmenting compact heat exchangers with a working fluid (e.g., air). The extracted heat can have several applications and through cooling the PV modules we can increase the efficiency of the system by about 30–40%, combined (i.e., heat and power). Two design concepts are presented and supported by CFD models. Prototypes of these systems are fabricated and installed and experimental investigations of their performances are currently in progress.
Proceedings Papers
Proc. ASME. ES2012, ASME 2012 6th International Conference on Energy Sustainability, Parts A and B, 217-226, July 23–26, 2012
Paper No: ES2012-91471
Abstract
Pacific Northwest National Laboratory (PNNL) is working with industry to independently monitor up to fifteen distinct 5 kilowatt-electric (kWe) combined heat and power (CHP) high temperature (HT) proton exchange membrane (PEM) fuel cell systems (FCSs) installed in light commercial buildings. This research paper discusses an evaluation of the first six months of measured performance data acquired at a one-second sampling rate from real-time monitoring equipment attached to the FCSs at building sites. Engineering performance parameters are independently evaluated. Based on an analysis of the first few months of measured operating data, FCS performance is consistent with manufacturer-stated performance. Initial data indicate that the FCSs have relatively stable performance and a long term average production of about 4.57 kWe of power. This value is consistent with, but slightly below, the manufacturer’s stated rated electric power output of 5 kWe. The measured system net electric efficiency has averaged 33.7%, based on the higher heating value (HHV) of natural gas fuel. This value, also, is consistent with, but slightly below, the manufacturer’s stated rated electric efficiency of 36%. The FCSs provide low-grade hot water to the building at a measured average temperature of about 48.4°C, lower than the manufacturer’s stated maximum hot water delivery temperature of 65°C. The uptime of the systems is also evaluated. System availability can be defined as the quotient of total operating time compared to time since commissioning. The average values for system availability vary between 96.1 and 97.3%, depending on the FCS evaluated in the field. Performance at Rated Value for electrical efficiency (PRV eff ) can be defined as the quotient of the system time operating at or above the rated electric efficiency and the time since commissioning. The PRV eff varies between 5.6% and 31.6%, depending on the FCS field unit evaluated. Performance at Rated Value for electrical power (PRV p ) can be defined as the quotient of the system time operating at or above the rated electric power and the time since commissioning. PRV p varies between 6.5% and 16.2%. Performance at Rated Value for electrical efficiency and power (PRV t ) can be defined as the quotient of the system time operating at or above both the rated electric efficiency and the electric power output compared to the time since commissioning. PRV t varies between 0.2% and 1.4%. Optimization to determine the manufacturer rating required to achieve PRV t greater than 80% has been performed based on the collected data. For example, for FCS unit 130 to achieve a PRV t of 95%, it would have to be down-rated to an electrical power output of 3.2 kWe and an electrical efficiency of 29%.The use of PRV as an assessment metric for FCSs has been developed and reported for the first time in this paper. For FCS Unit 130, a 20% decline in electric power output was observed from approximately 5 kWe to 4 kWe over a 1,500 hour period between Dec. 14th 2011 and Feb. 14th 2012.
Proceedings Papers
Proc. ASME. ES2011, ASME 2011 5th International Conference on Energy Sustainability, Parts A, B, and C, 375-384, August 7–10, 2011
Paper No: ES2011-54302
Abstract
In the last years one of the main research topics in energy field is represented by Organic Rankine Cycles (ORCs), due to their applicability in energy recovery from waste heat and in distributed combined heat and power (CHP) generation, particularly in small and micro scale systems. One of the key devices of the cycle is the expander: it must have a limited cost (like all the other components, in order to ensure the economic feasibility), but also a high efficiency, since the temperature of the heat source is often low and then the cycle efficiency is inherently scarce. In the first part of this paper a literature review on various positive-displacement expanders is presented, in order to outline their performances and their application field. Then, the numerical model of a volumetric reciprocating expander is implemented. This model, and another one previously developed to simulate scroll expanders, is combined with a thermodynamic model of the whole ORC system, so that a comparison between the two technologies can be carried out. The results confirm the possibility of realizing small scale energy recovery and cogeneration (CHP) systems with acceptable electrical efficiency also adopting low-cost components, directly derived from large scale industrial components.
Proceedings Papers
Proc. ASME. ES2010, ASME 2010 4th International Conference on Energy Sustainability, Volume 2, 11-20, May 17–22, 2010
Paper No: ES2010-90128
Abstract
Power generation using gas turbine power plants operating on the Brayton cycle suffers from low efficiencies and high irreversibilities. In this work, a solid oxide fuel cell (SOFC) is proposed for integration into a 10 MW gas turbine power plant, operating at 30% electrical efficiency (13.7% second law efficiency). The SOFC system entails anode recycling to enable self sustaining reformation reactions, thus alleviating the need for an external water supply and steam generation unit. It also utilizes turbine outlet heat recovery to ensure a sufficiently high SOFC operating temperature. The power output of the hybrid plant is 26.2 MW at 63.4% efficiency (35.3% second law efficiency). The hybrid plant performs best when 70–80% anode recycling is used. A thermo-economic model predicts a payback period of 4.6 years, based on future projected SOFC cost estimates.
Proceedings Papers
Proc. ASME. ES2009, ASME 2009 3rd International Conference on Energy Sustainability, Volume 2, 197-207, July 19–23, 2009
Paper No: ES2009-90373
Abstract
A 1 MW fuel cell power plant began operation at California State University, Northridge (CSUN) in January, 2007. The power plant was installed on campus to complement a Satellite Chiller Plant which is being constructed in response to increased cooling demands related to campus growth. The power plant consists of four 250 kW fuel cell units, and a waste heat recovery system which produces hot water for the campus. The waste heat recovery system was designed by CSUN’s Physical Plant Management personnel, in consultation with engineering faculty and students, to accommodate the operating conditions required by the fuel cell units as well as the thermal needs of the campus. A unique plenum system, known as a Barometric Thermal Trap, was created to mix the four fuel cell exhaust streams prior to flowing through a two stage heat exchanger unit. The two stage heat exchanger uses separate coils for recovering sensible and latent heat in the exhaust stream. The sensible heat is being used to partially supply the campus’ building hot water and space heating requirements. The latent heat is intended for use by an adjacent recreational facility at the University Student Union. This paper discusses plant performance data which was collected and analyzed over a several month period during 2008. Electrical efficiencies and Combined Heat and Power (CHP) efficiencies are presented. The data shows that CHP efficiencies have been consistently over 60%, with the potential to exceed 70% when planned improvements to the plant are completed.
Proceedings Papers
Proc. ASME. ES2009, ASME 2009 3rd International Conference on Energy Sustainability, Volume 2, 319-328, July 19–23, 2009
Paper No: ES2009-90301
Abstract
The performance of Building-Integrated Photovoltaic-Thermal (BIPV/T) collector is examined in this study. A full scale-test collector is monitored over several weeks in the summer of 2008 and measured data is used to calibrate a heat transfer model implemented in a common scientific computing software package. Following calibration, error between experimental measurements and the calibrated model outputs is within the limits of measurement uncertainty. Collector simulations are constructed to examine thermal efficiency, the effectiveness of the collector as a night-sky radiator, the effect of heat collection on electrical efficiency, the effect of two common exterior convection coefficients on collector performance, and the effect of eliminating the air gap between the PV and absorber surfaces. Overall collector thermal efficiency is relatively low compared to existing collectors. However, the potential low cost of the system could allow larger collector areas to compensate for low efficiency, especially in warm climates. Combined thermal and electrical efficiency can be as high as 34%. Additional analysis also indicates that the predicted thermal performance is highly dependent on the thermal resistance between the PV cells and the absorber plate and is sensitive to assumptions regarding wind-driven convection heat transfer coefficients.
Proceedings Papers
Proc. ASME. ES2008, ASME 2008 2nd International Conference on Energy Sustainability, Volume 2, 15-21, August 10–14, 2008
Paper No: ES2008-54287
Abstract
In this paper, a direct internal reforming SOFC (DIRSOFC) integrated with a downdraft biomass gasifier is modeled thermodynamically. As a case study, wood is selected as the biomass material and performance of the system at different operating temperature levels are studied. Change of the operating cell voltage, air utilization ratio, power output of the SOFC and electrical efficiency of the system with current density are investigated. Results show that operating the system at low temperature level yields higher electrical efficiency and air utilization ratio.
Proceedings Papers
Proc. ASME. ES2007, ASME 2007 Energy Sustainability Conference, 267-272, July 27–30, 2007
Paper No: ES2007-36189
Abstract
The determination of a prime mover’s characteristics is important in ascertaining its suitability for combined heat and power (CHP) applications. By definition, its operation affects the operation of all heat recovery equipment downstream. The correct balance between component electrical efficiency and waste heat is needed if the electric power producing equipment is to be used in a CHP application in a cost effective manner. Understanding the relationship between electric efficiency and exhaust stream energy content for different prime movers systems is a first step in an overall CHP system optimization. The goals of this work are to determine the potential financial benefit of utilizing waste heat from various prime mover configurations as well as establish the relationship between the two types of energy generation and costs. An economic optimization was performed to determine the system with the lowest average product (electricity and thermal energy) generation cost. The prime mover system was required to meet the electrical load demand of a typical 9290 m 2 (100,000 ft 2 ) office building in New York, NY, USA. The composition of the most cost effective prime mover system, when considering both electrical and thermal energy generation, was shown to be a single microturbine. When comparing the electrical and thermal energy generation of all systems studied with product generation cost, the more cost effective systems had either high electrical efficiency with a low thermal energy generation or high amounts of waste heat with low electrical efficiency. Each installation site and load demand is unique. The results of this study, along with others, can be used to help determine a cost effective system for a particular application.
Proceedings Papers
Proc. ASME. ES2007, ASME 2007 Energy Sustainability Conference, 273-281, July 27–30, 2007
Paper No: ES2007-36200
Abstract
The determination of a prime mover’s characteristics is important in ascertaining its suitability for combined heat and power (CHP) applications. By definition, its operation affects the operation of all heat recovery equipment downstream. The correct balance between component electrical efficiency and waste heat is needed if the electric power producing equipment is to be used in a CHP application in a cost effective manner. Understanding the relationship between electric efficiency and exhaust stream energy content for different prime movers systems is a first step in an overall CHP system optimization. The goals of this work are to determine the potential financial benefit of utilizing waste heat from various prime mover configurations as well as establish the relationship between the two types of energy generation and costs. An economic optimization was performed to determine the system with the lowest average product (electricity and thermal energy) generation cost. The prime mover system was required to meet the electrical load demand of a typical 9290 m 2 (100,000 ft 2 ) office building in New York, NY, USA. The composition of the most cost effective prime mover system, when considering both electrical and thermal energy generation, was shown to be a single microturbine. When comparing the electrical and thermal energy generation of all systems studied with product generation cost, the more cost effective systems had either high electrical efficiency with a low thermal energy generation or high amounts of waste heat with low electrical efficiency. Each installation site and load demand is unique. The results of this study, along with others, can be used to help determine a cost effective system for a particular application.